

DI-MUON PRODUCTION IN HEAVY-ION COLLISIONS: A SIGNAL FOR QUARK-GLUON DECONFINEMENT

Luis A. Hernandez

December 05, 2017 Loewe's fest (Conference on non perturbative QFT) Pontificia Universidad Católica de Chile.

Happy birthday Marcelo!!!

Strongly interacting matter in extreme conditions.

Electromagnetic probes.

arXiv:0905.0174 by P. Sorensen

Eur. Phys. J. C 61, 711 (2009) by R. Arnaldi, et al.

QCD Sum Rules.

The QCD Sum Rules are an analytical formalism, they include non-perturbative and perturbative information of QCD.

Operator Product Expansion (OPE).

The correlation function of these currents is introduced and treated in the framework of the OPE.

$$\Pi_0^{\text{QCD}}(Q^2) = C_0 \,\hat{I} + \sum_{N=1} \frac{C_{2N}(Q^2, \mu^2)}{Q^{2N}} \langle \hat{\mathcal{O}}_{2N}(\mu^2) \rangle \;.$$

OPE includes the short- and long-distance quark-gluon interactions.

QCD Sum Rules.

QCD information is then matched to a sum over hadronics states. where

$$\Pi(q^2) = i \int d^4x e^{iqx} \langle 0|T(J(x)J^{\dagger}(0))|0\rangle.$$

Correlation function in QFT.

$$\langle 0|T(J(y)J^{\dagger}(x))|0\rangle.$$

QCD Sum Rules.

$$\Pi_0^{\rm QCD}(Q^2) \Leftrightarrow \Pi_0^{\rm HAD}(Q^2)$$
?

Cauchy's Theorem.

- The discontinuity across the real axis brings in the hadronic spectral function.
- Integration around the circle involves the QCD correlator.
- The radius of the circle (typically named s₀) is the onset of pQCD.

Finite Energy QCD Sum Rules (FESR).

FESR.

Time to join both sectors!!!

$$\int_{0}^{s_{0}} ds P(s) \frac{1}{\pi} \text{Im} \Pi(s) = -\oint_{C(|s_{0}|)} ds P(s) \Pi^{OPE}(s).$$

$$\int_{0}^{s_{0}} ds P(s) \frac{1}{\pi} \text{Im} \Pi(s) = -\oint_{C(|s_{0}|)} ds P(s) C_{0} \hat{I}$$

$$- \sum_{N=1} \oint_{C(|s_{0}|)} ds P(s) \frac{C_{2N}(Q^{2}, \mu^{2})}{Q^{2N}} \langle \hat{\mathcal{O}}_{2N}(\mu^{2}) \rangle.$$

$$(-1)^{N}C_{2N+2}\langle \widehat{O}_{2N+2}\rangle = \int_{0}^{s_{0}} ds \ s^{N} \frac{1}{\pi} \operatorname{Im} \Pi^{HAD}(s) + \frac{1}{2\pi i} \oint_{C(|s_{0}|)} ds \ s^{N} \Pi^{QCD}(s).$$

FESR at finite temperature.

• We work with QFT at finite temperature.

$$S_{F}(T=0) = \frac{\cancel{k} + m}{k^{2} - m^{2} + i\epsilon},$$

$$S_{F}(T) = S_{F}(T=0) + 2\pi i \delta(k^{2} - m^{2})(\cancel{k} + m) n_{F}(|k_{0}|),$$

$$D_{B}(T=0) = \frac{i}{p^{2} - m^{2} + i\epsilon},$$

$$D_{B}(T) = D_{B}(T=0) + 2\pi \delta(p^{2} - m^{2}) n_{B}(|k_{0}|).$$

Wilson coefficients acquire explicitly the thermal behavior.

• Hadronic parameters develop thermal behaviour (Masses, coupling constants, resonance's widths).

FESR at finite temperature.

• The parameter s_0 is thermal-dependent.

Cesareo A. Dominguez

Qualitative parameter of deconfinement.

Eur. Phys. J. C 61, 711 (2009) by R. Arnaldi, et al.

 $Im\Pi^{HAD}(s)$ is related with the hadronic spectral function and the latter is well approximated by the Breit-Wigner form

$$\frac{1}{\pi} \text{Im}\Pi^{\text{HAD}}(s) = \frac{1}{\pi} \frac{1}{f_{\rho}^{2}} \frac{M_{\rho}^{3} \Gamma_{\rho}}{(s - M_{\rho}^{2})^{2} + M_{\rho}^{2} \Gamma_{\rho}}$$

Finite Sum Rules at finite temperature.

$$(-1)^{N-1}C_{2N}\langle O_{2N}\rangle = 8\pi^2 \left[\int_0^{s_0} ds \ s^{N-1} \frac{1}{\pi} |\mathsf{Im}\Pi^{\mathsf{HAD}}(s) - \frac{1}{2\pi i} \oint_{C(|s_0|)} ds \ s^{N-1}\Pi^{\mathsf{QCD}}(s) \right],$$

The solution from FESR for all hadronic parameters as a function of ${\it T}$ are the following

$$\begin{split} \Gamma_{\rho}(T) &=& \Gamma_{\rho}(0)[1-(T/T_c)^3]^{-1}, \\ M_{\rho}(T) &=& M_{\rho}(0)[1-(T/T_M^*)^{10}], \\ f_{\rho}(T) &=& f_{\rho}(0)[1-0.3901(T/T_c)^{10.75} \\ &+& 0.04155(T/T_c)^{1.27}]. \end{split}$$

Temperature behaviour of f_o

Temperature behaviour of Γ_{α}

With the solution from the FESR, we proceed to compute the di-muon thermal rate in the hadronic phase originating from ρ decays. (We consider processes where pions annihilate into ρ which in turn decay into di-muon by means vector dominance.)

$$\frac{\frac{dN}{d^4 \times d^4 K}}{\frac{d^4 \times d^4 K}{d^4 \times d^4 K}} = \frac{\alpha^2}{48\pi^4} \left(1 + \frac{2m^2}{M^2}\right) \left(1 - \frac{4m_\pi^2}{M^2}\right) \times \sqrt{1 - \frac{4m^2}{M^2}} \, \mathrm{e}^{-K_0 / T} \mathcal{R}(K, T) \frac{|\mathsf{m} \mathsf{m}^\mathsf{res}_0(\mathsf{M}^2),}{\mathsf{m}^2}$$

Non-model dependence result but directly from the perturbative and non-perturbative QCD information.

Invariant di-muon mass distribution compared to NA60

(Linear scale) Invariant di-muon distribution around p-meson peak compared to NA60 data.

Thank you!!!

For more information and details:

- A. Ayala and C. A. Dominguez and L. A. Hernandez and M. Loewe and M. J. Mizher, Phys. Rev. D88, 114028, (2013)
- A. Ayala and C. A. Dominguez and M. Loewe and Y. Zhang, Phys. Rev. D86, 114036, (2012)

- QCD Sum Rules was developed more than 30 years ago by Shifman, Vainshtein and Zakharov (SVZ).
- light-quark vector current correlator, which at T=0 can be written as

$$\Pi_{\mu\nu}(q^2) = i \int d^4x e^{iq\cdot x} \langle 0|T \left[\mathcal{V}_{\mu}(x) \mathcal{V}^{\dagger}_{\nu}(0) \right] |0\rangle$$
$$= \left(-g_{\mu\nu} + q_{\mu}q_{\nu} \right) \Pi_1(q^2),$$

where $V_{\mu}(x)=(1/2)[:\bar{u}(x)\gamma_{\mu}u(x)-\bar{d}(x)\gamma_{\mu}d(x):]$ is the conserved vector current and q_{μ} is the four-momentum transfer.

• In the thermal perturbative QCD sector, only one-loop contributions can be taken into account, since the problem of the appearance of two scales, i.e. the short-distance QCD scale and the critical temperature T_c , remains unsolved.

- ullet $\Gamma_
 ho(0)=0.145$ GeV, $M_
 ho(0)=0.776$ GeV, $T_c=0.197$ GeV and $f_
 ho(0)=5$
- In order to extend this analysis to finite chemical potential we first incorporate the μ dependence into the pQCD sector, which involves a quark loop. This modifies the corresponding Fermi-Dirac distribution, splitting it into particle-antiparticle contributions. And we incorporate the μ dependence of the critical temperature T_c . For this, we use a Schwinger-Dyson approach, a parametrization for the crossover transition line between chiral-symmetry-restored and -broken phases.

$$T_c(\mu) = T_c(\mu = 0) - 0.218\mu - 0.139\mu$$

The rate is given by

$$\frac{dN}{d^4 \times d^4 K} = \frac{\alpha^2}{48 \pi^4} \left(1 + \frac{2m^2}{M^2}\right) \left(1 - \frac{4m_\pi^2}{M^2}\right) \times \sqrt{1 - \frac{4m^2}{M^2}} e^{-K_0/T} \mathcal{R}(K, T) \mathsf{Im} \Pi_0^{\mathsf{res}}(M^2),$$

where N is the number of muon pairs per unit of infinitesimal space-time and energy-momentum volume, with x^{μ} the space-time coordinate and K^{μ} the four-momentum of the muon pairs, α is the electromagnetic coupling, m is the muon mass, m_{π} is the pion mass and M is the di-muon invariant mass. And

$$\begin{split} \mathcal{R} &= \frac{T/K}{1 - e^{-K_0/T}} \\ &\times & \ln \left[\left(\frac{e^{-E_{\max}/T} - 1}{e^{-E_{\min}/T} - 1} \right) \left(\frac{e^{E_{\min}/T} - e^{-K_0/T}}{e^{E_{\max}/T} - e^{-K_0/T}} \right) \right], \end{split}$$

with

$$E_{\text{max}} = \frac{1}{2} \left[K_0 + K \sqrt{1 - 4m_{\pi}^2/M^2} \right]$$

$$E_{\text{min}} = \frac{1}{2} \left[K_0 - K \sqrt{1 - 4m_{\pi}^2/M^2} \right].$$

In order to integrate the di-moun thermal rate, we use

$$d^{4}K = \frac{1}{2}dM^{2}d^{2}K_{\perp}dy$$
$$d^{4}X = \tau d\tau d\eta d^{2}X_{\perp},$$

where y and η are the momentum-space and coordinate-space rapidities, respectively and $\tau = \sqrt{t^2 - z^2}$. To relate the temperature change to the time evolution of the system, we neglect a possible small transverse expansion, assume it entirely longitudinal, and use the cooling law

$$T = T_0 \left(\frac{\tau_0}{\tau}\right)^{v_s^2},$$

where $v_s^2=1/3$ is the square of the sound velocity for an ideal hadron gas. The evolution is taken down to a freeze-out temperature T_f . Also, we consider perfect correlation between η and y ($\eta=y$). The invariant mass distribution becomes

$$\frac{dN}{dMdy} = \Delta y M \int_{\tau_0}^{\tau_f} \tau d\tau \int d^2 K_{\perp} \int d^2 x_{\perp} \frac{dN}{d^4 x d^4 K}.$$