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Abstract
This set of lectures is aimed at graduate students in particle physics, and is heavily based on

content written by Yosef Nir for previous iterations of this school (who thus deserves most credit for

this material). Following an overview of the Lagrangian formalism and the significance of symmetries

in fundamental physics, we outline the StandardModel of Particle Physics as a gauge theory where the

local SU(3)C×SU(2)L×U(1)Y symmetry is spontaneously broken into SU(3)C×U(1)EM through

the Brout-Englert-Higgs mechanism. The elementary particles and interactions are discussed along

with the predictions and experimental tests of the model. Finally, the free parameters are enumerated,

and outstanding questions and possible extensions to the Standard Model are discussed.
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1 Introduction to the Lagrangian formalism

In modern physics, we encode the fundamental laws of nature through the quantum interpreta-

tion of the principle of least action. In Quantum Field Theory (QFT) the action is the integral over

spacetime of the “Lagrangian density”, L:

S =

∫
d4xL[ϕi(x), ∂µϕi(x)], (1)

where d4x = dx0dx1dx2dx3 is the volume element in 4D Minkowski spacetime and the index i runs

from 1 to the number of fields, and ϕ(x) refers to a generic field. In general the Lagrangian density

(hereafter referred to just as the Lagrangian) must satisfy the following requirements:

1. It is only a function of the fields and their derivatives (this ensures translational invariance)
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and must be invariant under the Poincaré group (spacetime translations and Lorentz transfor-

mations).

2. It only depends on the fields taken at a single point xµ (to give a local theory).

3. It is real (so total probability is conserved).

4. It must be an analytic function of the fields (this is not a general requirement but is common to

all field theories solved using perturbation theory, where we expand about a minimum leading

to Lagrangians that are polynomials in the fields.

5. It must be invariant under certain internal symmetry groups that correspond to conserved quan-

tities and reflect the fundamental symmetries of nature.

Two additional requirements are important when model-building:

7. Naturalness- every term not forbidden by a symmetry should appear.

8. Renormalisability1 - a renormalisable Lagrangian should only contain terms with a dimension

less than or equal to four in the fields and their derivatives.

The renormalisability requirement ensures that the Lagrangian contains no more than two ∂µ oper-

ators, giving classical equations of motion with no higher than second order partial derivatives. We

expect that the Lagrangian for the complete “theory of everything” in nature should indeed be renor-

malisable, however if we assume that the theory in question, here the Standard Model, is only an

effective field theory valid up to some energy scale Λ then the non-renormalisable terms must also

be considered. Such terms have coefficients with inverse mass dimensions 1/Λn for n = 1, 2, 3.... In

practise, the renormalisable terms are the leading terms in an expansion inE/ΛwhereE is the energy

scale of the process being studied, which means that the renormalisable part of the Lagrangian is a

good starting point to study.
1The topic of renormalisaton goes far beyond this handout. This effectively refers to techniques that can be applied to handle

infinities arising in calculated quantities by absorbing the divergances into the values of the physical quantities. A “nice” definition I

found on the internet of a renormalisable theory is one where the adjustment of a finite number of parameters (such as the bare electron

charge and mass) allows us to calculate the results of all observable in finite terms. A theory is not renormalizable if you need infinitly

many quantities to absorb the infinities, and such theories are usually only considered as effective theories below some higher energy

cut-off Λ.
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Properties (i)-(iv) are covered extensively in many QFT courses and will not be discussed further

here. However the final three, and particularly (v) will be covered extensively in this course. In

particular, wewill see how the particle content and interactions of the StandardModel can be explained

by a spontaneously broken SU(3)C × SU(2)L × U(1)Y gauge symmetry, as well as seeing how the

predictions of this model have been tested experimentally to an impressive precision in the last half-

century.

2 Symmetries in fundamental physics

Table 1 summarises the consequences in nature of imposing different types of symmetries on

QFTs. It should be noted that accidental symmetries that can arise in QFTs but are not imposed as

external constraints. These often arise when Lagrangian’s are truncated, i.e. renormalisable terms

in the Lagrangian often have accidental symmetries that are broken by non-renormalisable terms or

anomalies 2. These will be discussed for the renormalisable SM Lagrangian in these lectures.

Type Consequence

Spacetime Conservation of energy, momentum, angular momentum

Discrete Selection rules

Global (exact) Conserved charges

Global (spontaneously broken) Massless scalars

Local (exact) Interactions, massless spin-1 mediators

Local (spontaneously broken) Interactions and massive spin-1 mediators

Table 1: Symmetries typically encountered in QFTs and their consequences

In the SM we only impose local symmetries, whilst in extensions of the SM we typically only

impose local and global discrete symmetries. It is possible in principle to impose global continuous

symmetries but this is rarely done in model building for two reasons: firstly there are arguments

suggesting global continuous symmetries are always broken by gravitational effects so can only arise

as accidental symmetries, and secondly, there are not obvious phenomenological motivations for such
2In Quantum Field Theory anomalies refer to symmetries that exist at a classical level but are broken in the theory. To be more

specific, is the failure of a symmetry of a theory’s classical action to be a symmetry of any regularization of the full quantum theory.

Gauge anomalies refer to effects, often one-loop diagrams, that break the gauge symmetry of the theory. A well-known example is the

chiral or “ Adler–Bell–Jackiw” anomaly in electroweak interactions, whereby a symmetry of classical electrodynamics is violated by

quantum corrections. It originally referred to the observed anomalous decay rate of the neutral pion into two photons.
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symmetries.

When considering the implications of imposing symmetries on the particle content of the theory,

the following consequences must be considered in addition to those in Table 1.

• The lightest particle charged under a symmetry is stable.

• Charged fermions cannot have Majorana masses.

• Chiral fermions cannot have Dirac masses. 3

When considering the Majorana vs Dirac nature of fermions, the following differences should be

noted:

• Dirac fermions have 4 degrees of freedom compared to 2 for Majorana fermions.

• Dirac fermions have am×n general mass matrix, compared to Majorana fermions which have

an (m+ n)× (m+ n) symmetric matrix.

Within the SM, the quarks and leptons are Dirac Fermions, whereas neutrinos could be Majorana

fermions (more to come on this later).

Combining these observations it should thus be noted that charged fermions in a chiral represen-

tation are massless which means that there’s a way that the existence of massless fermions in nature

can be explained through symmetry principles.

3 Constructing the Standard Model

To construct a model describing elementary particles/interactions the following must be speci-

fied:

• The symmetry

• The transformation properties of the fermions and scalars under that symmetry.

• The pattern of spontaneous symmetry breaking
3A chiral fermion is just a field which transforms in one of the Weyl representations of the Lorentz group. A Dirac fermion can

be composed into two chiral fermions. A key feature of the SM is that the fermions are chiral, in that the left- and right- Weyl spinor

components of the would-be Dirac spinor representations couple differently to the Gauge fields.
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The most general Lagrangian depending on the scalars and fermions that is invariant under that sym-

metry can then be written out. If the symmetry is local (see Table 1) then the required vector fields

must also be added. The Lagrangian is written up to some order in the fields. If imposing renormal-

isability the Lagrangian is truncated at dimension four in the field, and can be decomposed into:

L = Lkin + Lψ + LYuk + Lϕ (2)

whereLkin describes the free spacetime propagation of all the dynamical fields and gauge interactions,

Lψ gives the fermion mass terms, LYuk describes the Yukawa interactions between the scalar sector

and fermions, and Lϕ gives the scalar potential.

The resulting Lagrangian will have a number of free parameters that must be determined experi-

mentally, with the number of free parameters (N ) determining the number of independent experiments

that must be performed to extract the parameters. Additional measurements then provide tests of the

theory.

For the Standard Model is defined as follows:

• The gauge symmetry is a local

GSM = SU(3)C × SU(2)L × U(1)Y (3)

which is spontaneously broken into

GSM → SU(3)C × U(1)EM , (QEM = T3 + Y ) (4)

• There are three generations of fermions, each of which consists of five representations ofGSM

QLi(3, 2)+ 1
6
, URi(3, 1)+ 2

3
, DRi(3, 1)− 1

3
, LLi(1, 2)− 1

2
, ERi(1, 1)−1 (i = 1, 2, 3), (5)

and a single scalar field

ϕ(1, 2)+ 1
2

(6)

In the notation (A,B)Y , A is the representation under SU(3)C , B is the representation under

SU(2)L and Y is the hypercharge. The fermions that transform as triplets under SU(3)C are the

quarks, whilst those that transform as singlets are the leptons.

Referring back to Equation (2), we will now discuss the explicit form of the Lagrangian made of

the fermion fields QLi, URi, DRi, LLi and ERi in Equation (5) and the scalar field ϕ in Equation (6),

subject to the gauge symmetry in Equation (3) and generating the SSB in Equation (4).
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3.1 Lkin

The local symmetries in the SM gauge group require the introduction of three types of gauge

boson degrees of freedom

Gµ
a(8, 1)0, W µ

a (1, 3)0, Bµ(1, 1)0 (7)

which have corresponding field strengths

Gµν
a = ∂µGν

a − ∂νGµ
a − gsfabcG

µ
bG

ν
c (8)

W µν
a = ∂µW ν

a − ∂νW µ
a − gϵabcW

µ
b W

ν
c (9)

Bµν = ∂µBν − ∂νBµ (10)

where fabc(ϵabc) are the SU(3) (SU(2)) structure constants. The covariant derivative is

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′BµY (11)

where the La’s are SU(3)C generators (the 3× 3 Gell-Mann matrices 1
2
λa for triplets, 0 for singlets),

the Tb’s are SU(2)L generators (the 2 × 2 Pauli matices 1
2
τb for doublets, 0 for singlets) and the Y ’s

are the U(1)Y charges. The explicit forms of the covariant derivative acting on the fermion and scalar

fields are
Dµϕ = (∂µ +

i

2
gW µ

b τb +
i

2
g′Bµ)ϕ,

DµQLi = (∂µ +
i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
i

6
g′Bµ)QLi,

DµURi = (∂µ +
i

2
gsG

µ
aλa +

i

2
gW µ

b τb +
2i

3
g′Bµ)URi,

DµDRi = (∂µ +
i

2
gsG

µ
aλa +

i

2
gW µ

b τb −
i

3
g′Bµ)DRi,

DµLLi = (∂µ +
i

2
gW µ

b τb −
i

2
g′Bµ)LLi,

DµERi = (∂µ − ig′Bµ)ERi,

(12)

giving a resulting Lagrangian

Lkin = −1

4
Gµν
a Gaµν −

1

4
W µν

b Wbµν −
1

4
BµνBµν

− iQ̄Li /DQLi − iŪRi /DURi − iD̄Ri /DDRi − iL̄Li /DLLi − iĒRi /DERi − (Dµϕ)†(Dµϕ)

(13)

This part of the Lagrangian is flavour-universal and conserves CP. (Note the “slash” notation /D cor-

responds to γµDµ
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3.2 Lψ

There are no explicit mass terms for fermions in the SM Lagrangian. Dirac mass terms cannot

be written as the fermions are assigned to chiral representations of the gauge symmetry. Majorana

mass terms also cannot be used as they have Y ̸= 0 so LSMψ = 0

3.3 LYuk

In the SM the Yukawa part of the Lagrangian is

LSMYuk = Y d
ijQ̄LiϕDRj + Y u

ij Q̄Liϕ̃URj + Y e
ijL̄LiϕERj + h.c (14)

where ϕ̃ = iτ2ϕ
† and the Y f are general 3 × 3 matrices of dimensionless couplings. In general this

part of the Lagrangian is flavour-dependent (i.e. Y f ̸̸∝ 1) ansd CP violating. WLOG, we can perform

a bi-unitary transformation4 to diagonalise the lepton Yukawa couplings (Ŷ e is diagonal and real):

Y e → Ŷ e = UeLY
eU †

eR = diag(ye, yµ, yτ ). (15)

In the basis defined by the transformation in Equation (15) the components of the lepton SU(2)-

doublets and the three singlets are: νeL

eL

 ,

 νµL

µL

 ,

 ντ L

τL

 , eR, µR, τR. (16)

where e, µ, τ are ordered by the size of their (increasing) Yukawa couplings.

A similar approach can be taken in the quark sector:

Y u → Ŷ u = VuLY
uV †

uR = diag(yu, yc, yt). (17)

In this basis, the components of the quark SU(2)- doublets and the three “up-type” quark singlets

are:

 uL

duL

 ,

 cL

scL

 ,

 tL

btL

 , uR, cR, tR. (18)

where as before u, c, t are ordered by their increasing Yukawa couplings. A different bi-unitary trans-

formation can be performed to diagonalise the “down-type” quark masses:
4For a general mass matrix mij there exist unitary matrices S and T such that S†mT = md is diagonal. S is the unitary matrix

that diagonalises the Hermitian combinationmm† i.e. S†(mm†)S = m2
d

8
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Y d → Ŷ d = VdLY
dV †

dR = diag(yd, ys, yb). (19)

In this basis the components of the quark SU(2)- doublets and the three “down-type” quark singlets

are:  udL

dL

 ,

 csL

sL

 ,

 tbL

bL

 , dR, sR, bR. (20)

where as before d, s, b are ordered by their increasing Yukawa couplings. In general, VuL ̸= VdL

,meaning that the interaction bases defined by Equation (17) and Equation (19) are different. Choosing

the “up-type” quark basis, we can Y d as a product of a unitary matrix and a diagonal one

Y u = Ŷ u, Y d = V Ŷ d (21)

and similarly in the “down-type” quark basis

Y d = Ŷ d, Y u = V †Ŷ u (22)

where in both cases the matrix V is given by

V = VuLV
†
dL (23)

It should be noted that whilst VuL, VuR, VdL and VdR depend on the basis from which we start the diag-

onalisation, the combination V = VuLV
†
dL does not which suggests that V is indeed related to physical

quantities. We will soon see that it plays a crucial role in determining charged current interactions.

3.4 Lϕ

The scalar potential in the SM Lagrangian is:

LSMψ = −µ2ϕ†ϕ− λ(ϕ†ϕ)2 (24)

Note that this part also conserves CP. µ2 < 0 and λ > 0 generates the required spontaneous symmetry

breaking (SSB). Defining v2 = −µ2

λ
the Lagrangian can be re-written (up to a constant term) as

LSMψ = −λ

(
ϕ†ϕ− v2

2

)2

(25)

This form of the scalar potential implies that the scalar field acquires a vacuum expectation value

(VEV) of |⟨ϕ⟩| = v√
2
. Chosing the direction of ⟨ϕ⟩ in the real direction of the “down” component

⟨ϕ⟩ =

 0

v√
2

 (26)

9
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This VEV breaks the SU(2) × U(1) electroweak symmetry down to a U(1) subgroup. This corre-

sponds to there being one (and only one) linear combination of generators that annihilates the vac-

cuum state. For the choice in Equation (26) this is T3 + Y which we identify as the generator Q of

the unbroken subgroup U(1)EM .

3.5 Summary

The renormalisable part of the SM Lagrangian is

LSM =− 1

4
Gµν
a Gaµν −

1

4
W µν

b Wbµν −
1

4
BµνBµν − (Dµϕ)†(Dµϕ)

− iQ̄Li /DQLi − iŪRi /DURi − iD̄Ri /DDRi − iL̄Li /DLLi − iĒRi /DERi

+ (Y d
ijQ̄LiϕDRj + Y u

ij Q̄Liϕ̃URj + Y e
ijL̄LiϕERj + h.c)

− λ

(
ϕ†ϕ− v2

2

)2

(27)

where i, j = 1, 2, 3

4 The SM particle spectrum

4.1 Scalars

If we go back to Lϕ, and denote the four real components of the scalar doublet as three phases

θa(x) (with a = 1, 2, 3) and one magnitude h(x). The three phases are the “would-be” Goldstone

bosons. In the SM the broken generators are T1, T2 and T3 − Y , so we can write:

ϕ(x) = exp
[
i

2
(σaθa(x)− Iθ3(x)

]
1√
2

 0

v + h(x)

 (28)

The local SU(2)L×U(1)Y symmetry of the Lagrangian allows one to rotate away the explicit depen-

dence on the three θa(x). These would-be Goldstone bosons are “eaten” by the three gauge bosons

that acquire masses as a result of SSB. In this gauge the one degree of freedom in ϕ(x) can then be

seen through:

ϕ(x) =
1√
2

 0

v + h(x)

 (29)

The scalar h(x) is the Higgs boson, which is an SU(3)C singlet and is U(1)EM . By plugging Equa-

tion (29) into Equation (25) we can identify the mass as

m2
h = 2λ, v2 (30)

10
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Experimentally, the best combined value quoted by the Particle Data Group (PDG) based on mea-

surements by the ATLAS and CMS collaborations at CERN is 125.25± 0.17 GeV [1]

4.2 Vector bosons

As the SU(3)C gauge symmetry is unbroken after SSB, the gluon, which exists as an SU(3)C

colour-octet, and is U(1)EM -neutral, is massless withmg = 0.

For the broken SU(2)L × U(1)Y , three of the four vector bosons (corresponding to the sponta-

neously broken generators) acquiremasseswhilst one remainsmassless. Considering (Dµ⟨ϕ⟩)†(Dµ⟨ϕ⟩)

and using the expression for Dµ(ϕ) from Equation (12)

Dµ⟨ϕ⟩ = i√
8
(gW µ

a σa + g′Bµ)

 0

v

 =
i√
8

 gW µ
3 + g′Bµ g(W µ

1 − iW µ
2 )

g(W µ
1 + iW µ

2 ) −gW µ
3 + g′Bµ

 0

v

 (31)

meaning that the mass terms of the vector bosons are given by

LMV
=

1

8

(
0 v

) gW3µ + g′Bµ g(W1 − iW2)µ

g(W1 + iW2)µ −gW3µ + g′Bµ

 gW µ
3 + g′Bµ g(W1 − iW2)

µ

g(W1 + iW2)
µ −gW µ

3 + g′Bµ

 0

v


(32)

Defining the weak mixing angle θW through

tan θW =
g′

g
, (33)

we can then define four gauge boson states as

W±
µ =

1√
2
(W1 ∓ iW2)µ, Z

0
µ = cos θWW3µ − sin θWBµ, A

0
µ = sin θWW3µ + cos θWBµ (34)

The W±
µ are charged under electromagnetism (EM) whilst A0

µ and Z0
µ are neutral. In terms of these

gauge boson fields the Lagrangian can be written

LMV
=

1

4
g2v2W+µW−

µ +
1

8
(g2 + g′2)v2Z0µZ0

µ (35)

which allow us to write

m2
W =

1

4
g2v2, m2

Z =
1

4
(g2 + g′2)v2, m2

A = 0 (36)

(Note that for a complex field ϕwith massm the mass term ism2|ϕ|2 whilst for a real field it is m2ϕ2

2
).

At this point we should note:
11
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• As expected, three vector bosons acquire a mass with one remaining massless.

• m2
A = 0 should be seen as a consistency check on our calculation rather than a prediction.

• θW represents a rotation angle of the two neutral vector bosons from the interaction basis, where

the fields have well-defined transformation properties under the full gauge symmetry (W3, B)

into the mass bases for the vector bosons (Z,A)

The SSB in the theory leads to relationships between observables that would otherwise have been

independent in the absence of the symmetry. For example:

m2
W

m2
Z

=
g2

g2 + g′2
(37)

This relationship can be tested experimentally, with the left hand side being derived from themeasured

mass spectrum and the right from the interaction rates. This relationship is conventionally expressed

in terms of θW as

ρ ≡ m2
W

m2
Z cos2 θW

= 1 (38)

The ρ = 1 results from SSB by SU(2)-doublets and thus provides a test of this specific ingredients

of the SM. The experimental values of the weak gauge boson masses are [1]:

mW = 80.377± 0.012GeV, mZ = 91.1876± 0.0021GeV (39)

By requiring ρ = 1 the ratio of these can be used to determine sin2 θW which can also be deter-

mined experimentally through various interaction rates. Taking the values above

mW

mZ

= 0.8814± 0.0001 → sin2 θW = 1−
(
mW

mZ

)
0.2231 (40)

which can be then compared to values determined experimentally.

4.3 Fermions

As the SM does not allow bare mass terms for the charged fermions, their masses can only

arise from the Yukawa part of the Lagrangian in Equation (14). With ⟨ϕ0⟩ = v√
2
this has a piece

corresponding to charged lepton masses

me =
yev√
2
, mµ =

yµv√
2
, mτ =

yτv√
2
, (41)

a piece corresponding to up-type quark masses

mu =
yuv√
2
, mc =

ycv√
2
, mt =

ytv√
2
, (42)

12
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and a piece corresponding to down-type quark masses.

md =
ydv√
2
, ms =

ysv√
2
, mb =

ybv√
2
. (43)

In other words, all charged fermions acquire Dirac masses as a result of the SSB in the SM. This means

that whilst they are in chiral representations of the full SM gauge group SU(3)C × SU(2)L ×U(1)Y

they are in vector-like representations of the SU(3)C × U(1)EM group:

• The LH and RH charged lepton fields e, µ, τ are in the (0)−1 representation.

• The LH and RH up-type quarks fields u, c, t are in the (3)+ 2
3
representation.

• The LH and RH down-type quark fields d, s, b are in the (3)− 1
3
representation.

On the other hand the neutrinos remain massless

mνe = mνµ = mντ = 0 (44)

In the construction we have followed, this is the case in spite of the fact that neutrinos transform as

(1)0 under the unbroken gauge group, which in principle then allows Majorana masses. As we will

soon see, this masslessness is an accidental symmetry of the SM.

The experimental values of the charged fermion masses are [1]:

me = 0.51099895000± 0.0000000001 MeV

mµ = 105.6583755± 0.0000023 MeV,

mτ = 1776.86± 0.12 MeV,

mu = 2.16+0.49
−0.26 MeV, mc = 1.27± 0.02 GeV, mt = 172.69± 0.30 GeV

md = 4.67+0.48
−0.17 MeV, ms = 93.4+8.6

−3.4 MeV, mb = 4.18+0.03
−0.02 GeV

(45)
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4.4 Summary

A summary of the mass eigenstates of the SM, their SU(3)C × U(1)EM quantum numbers and

masses in units of the VEV v is provided in Table 2.

Particle Spin Colour Q Mass [v]

W± 1 (1) ±1 1
2
g

Z0 1 (1) 0 1
2

√
g2 + g′2

A0 1 (1) 0 0

g 1 (8) 0 0

h 0 (1) 0
√
2λ

e, µ, τ 1
2

(1) -1 ye,µ,τ√
2

νe, νµ, ντ
1
2

(1) 0 0

u, c, t 1
2

(3) +2
3

yu,c,t√
2

d, s, b 1
2

(3) -1
3

yd,s,b√
2

Table 2: Summary of SM particle spectrum

All masses are proportional to the VEV of the scalar field, v, which for the massive gauge bosons

and fermions is expected. In the absence of SSB gauge boson mass terms would be forbidden by the

gauge symmetry and for fermions they would be protected by their chiral nature. The situation is

difficult for the Higgs boson as a mass-squared term doesn’t violate any symmetry. mh ∝ v is a

manifestation of the fact the SM has a single dimensionful parameter, which can be taken to be v, and

thus all masses must be proportional to this parameter.

5 SM interactions

5.1 EM and strong interactions

As discussed previously, a local SU(3)C × U(1)EM survives SSB in the SM, which means that

massless photon and gluon gauge fields exist in the SM. All charged fermions interact with the photon

giving the QED Lagrangian

LQED,ψ = −2e

3
ūi /Aui +

e

2
d̄i /Adi + eℓ̄i /Aℓi (46)

where u1,2,3 = u, c, t, d1,2,3 = d, s, b and ℓ1,2,3 = e, µ, τ .

The following points should be emphasised about QED:
14
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• The photon couplings are vector-like and parity conserving.

• Diagonality: the photon couples to e+e−, µ+µ− and τ+τ− but not between generations i.e. to

e±µ∓, e±τ∓ or µ±τ∓ pairs, and similarly in the up-type and down-type quark sectors.

• Universality: the photon couplings to different generations are universal.

All coloured fermions (i.e. the quarks) interact with the gluon

LQCD,ψ = −gs
2
q̄λa /Gaq, (47)

where q = u, c, t, d, s, b. For QCD the following points should be emphasised:

• The gluon couplings are vector-like and parity conserving.

• Diagonality: the gluon couples to qq̄ but doesn’t allow flavour changing pairs q′q̄ for example

t̄c.

• Universality: the gluon couplings to different quark generations are universal.

The universality of photon and gluon couplings arises from the SU(3)C ×U(1)EM gauge invariance

and thus holds in any model, not just the SM.

5.2 Z-boson mediated weak interactions

All SM fermions couple to the Z-boson as described by

LZ,ψ =
e

sW cW

[
−
(
1

2
− s2W

)
ēLi /ZeLi + s2W ¯eRi /ZeRi +

1

2
¯νLα /ZνLα +

(
1

2
− 2

3
s2W

)
ūLi /ZuLi

−2

3
s2W ūRi /ZuRi −

(
1

2
− 1

3
s2W

)
d̄Li /ZdLi +

1

3
s2W d̄Ri /ZdRi

] (48)

where να = νe, νµ, ντ . The following points should be noted:

• The Z-boson couplings are chiral and parity violating.

• Diagonality: the Z-boson couples diagonally, which means there are no Z-mediated flavour-

changing neutral current (FCNC) processes.

• Universality: The couplings of the Z-boson to different fermion generations are universal.
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The universality of theZ-bosonweak interactions results from a special feature of the SM: all fermions

of a given chirality and given charge come from the same SU(2)L × U(1)Y representation. In terms

of experimental tests of this diagonality and universality, consider the leptonic sector. If we consider

the experimental values for the Z- boson branching fractions according to the particle data group

(PDG) [1]
BR(Z → e+e−) = 3.3632± 0.0042%

BR(Z → µ+µ−) = 3.3662± 0.0066%

BR(Z → τ+τ−) = 3.3696± 0.0083%

(49)

The ratios of these values (also quoted from PDG [1]) are consistent with universality.

Γ(µ+µ−)

Γ(e+e−)
= 1.0001± 0.0024

Γ(τ+τ−)

Γ(e+e−)
= 1.0020± 0.0032

(50)

Similarly, the diagonality can be tested by experimental searches for processes that would violate this

BR(Z → e±µ∓ < 7.5× 10−7

BR(Z → e±τ∓ < 5.0× 10−6

BR(Z → µ±τ∓ < 6.5× 10−6
(51)

If we omit common factors, particularly a factor of e2

4s2W c2W
, and phase space factors, the follow-

ing predictions for Z-boson decays can be obtained for Z-decays into a single-generation fermion-

antifermion pair of each type

Γ(Z → νn̄u) ∝ 1,

Γ(Z → ℓℓ̄) ∝ 1− 4s2W + 8s4W ,

Γ(Z → uū) ∝ 3

(
1− 8

3
s2W +

32

9
s4W

)
,

Γ(Z → dd̄) ∝ 3

(
1− 4

3
s2W +

8

9
s4W

)
,

(52)

Subbing in s2W = 0.225 this gives

Γν : Γℓ : Γu : Γd = 1 : 0.51 : 1.74 : 2.24 (53)
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Experimentally, the current experimental values (from PDG [1], with the uū and dd̄ numbers taking

from the older 2010 update) are

BR(Z → νν̄) = 6.6667± 0.01833%

BR(Z → ℓℓ̄) = 3.3658± 0.0023%

BR(Z → uū) = 11.6± ±0.6%

BR(Z → dd̄) = 15.6± 0.4%

(54)

which, taking the central values only, gives

Γν : Γℓ : Γu : Γd = 1 : 0.505 : 1.740 : 2.340 (55)

which are fairly consistent.

5.3W -boson

When considering charged vector boson W± to fermion pairs. For the lepton mass eigenstates,

things are relatively simple as there exists an interaction basis that is also a mass basis, which means

theW -boson interactions are universal in the mass basis:

LW,ℓ = − g√
2
( ¯νeL /W

+
e−L + ¯νµL /W

+
µ−
L + ¯ντ L /W

+
µ−
L + h.c.) (56)

This equation reveals some important features of the SM:

• Only left-handed leptons take part in charged-current interactions, which means parity is vio-

lated.

• Diagonality: the charged current (CC) interactions couple each charged lepton to a single neu-

trino, and vice versa. Note that a global SU(2) symmetry would allow off-diagonal couplings,

but it is the local symmetry that generates this diagonality.

• Universality: the couplings of the W -boson to τντ , µνµ and eνe are equal. As above, a global

symmetry would have accommodated independent couplings to each lepton pair.

All of these predictions have been experimentally tested. For universality, lets consider the branching

ratios of theW -boson to the three lepton flavour pairs [1]

BR(W+ → e+νe) = (10.71± 0.16)×10−2

BR(W+ → µ+νµ) = (10.63± 0.15)×10−2

BR(W+ → e+νe) = (11.38± 0.21)×10−2

(57)
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which provide a nice confirmation of universality

Γ(µ+νµ
Γ(e+νe)

= 0.996± 0.008

Γ(τ+νµ
Γ(e+νe)

= 1.043± 0.024

(58)

For the quark sector things are more complicated as there is no interaction basis that is also a

mass basis. In the interaction basis where the down-type quarks are the mass eigenstates, the CC

interactions have the following form:

LW,q = − g√
2
( ¯udL /W

+
dL + ūsL /W

+
sL + ūbL /W

+
bL + h.c.) (59)

The Yukawa matrices in this basis have the form given in Equation (22) and in particular in the up-

quark sector we have

LuYuk =
(

¯udL ūsL ūbL

)
V †Ŷ u


uR

cR

tR

 , (60)

which tells us that the transformation to the mass basis is given by
uL

cL

tL

 = V


udL

usL

ubL

 . (61)

This equation allows us to write the form of the CC interactions in the mass basis as:

LW,q = − g√
2

(
ūL c̄L t̄L

)
V /W

+


dL

sL

bL

+ h.c. (62)

We could easily convince ourselves that we would have obtained the same form as Equation (62)

starting from any arbitrary interaction basis. It should be noted again at this point that V = VuLV
†
dL

is basis independent. The equation above reveals the following important features:

• Only left-handed quarks take place in CC interactions, which means that again, parity is vio-

lated.

• The W -boson couplings to the quarks are neither universal nor diagonal. The universality of

gauge interactions is hidden in the unitarity of V .
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The hidden universality in the quark sector can be tested by the prediction

Γ(W → uX) = Γ(W → cX) =
1

2
Γ(W → hadrons) (63)

Experimentally (from the PDG [1]),

Γ(W → cX)

Γ(W → hadrons)
= 0.49± 0.04 (64)

The matrix V is called the CKM matrix after Nicola Cabibbo, Makoto Kobayashi and Toshi-

hide Maskawa. The form is not unique. Firstly, there is freedom in that we can permute between

generations. This can be fixed by ordering the up-type and down-type quarks by their masses, i.e.

(u1, u2, u3) → (u, c, t) and (d1, d2, d3) → (d, s, b), which gives

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 (65)

Ommitting common factors (particularly a factor g2

4
) and phase-space factors, we get the following

predictions for theW -boson decays:

Γ(W+ → ℓ+νℓ) ∝ 1

Γ(W+ → uid̄j) ∝ 3|Vij|2, (i = 1, 2; j = 1, 2, 3)
(66)

where the top quark isn’t included as it is heavier than the W -boson so the decay is kinematically

forbidden. Taking this, and the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1 (67)

into account, we obtain

Γ(W → hadrons) ≈ 2Γ(W → leptons) (68)

Experimentally (from the PDG [1]),

BR(W → leptons) = (32.58± 0.27), BR(W → hadrons )(67.41± 0.27)% (69)

which has a ratio of 2.07 (no uncertaities calculated) which is consistent with the SM prediction.
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5.4 Interactions of the Higgs

The Higgs boson has self-interactions, weak interactions and Yukawa interactions through

Lh =
1

2
∂µh∂

µh− 1

2
m2
hh

2 − m2
h

2v
h3 − m2

h

8v2
h4

+m2
WW−

µ W
µ+

(
2h

v
+

h2

v2

)
+

1

2
m2
ZZµZ

µ

(
2h

v
+

h2

v2

)
− h

v
(meēLeR +mµµ̄LµR +mτ τ̄LτR

+muūLuR +mdd̄LdR +mcc̄LcR +mss̄LsR +mtt̄LtR +mbb̄LbR + h.c)

(70)

The Higgs couples diagonally to the quark mass eigenstates. This is because the Yukawa couplings

determine both the masses and the Higgs couplings to the fermions, which means that in the mass

basis the Yukawa interactions are also diagonal. A formal derivation which starts from an arbitrary

interaction basis goes as follows:

hD̄LY
dDR = hD̄L(V

†
dLVdL)Y

d(V †
dRVdR)DR

= h(D̄LV
†
dL)(VdLY

dV †
dR)(VdRDR)

= h(d̄L, s̄L, b̄L)Ŷ
d(dR, sR, bR)

T

(71)

The Higgs couplings to the fermion mass eigenstates have the following properties:

• Diagonality.

• Non-universality .

• Proportionality to the fermion masses: the heavier the fermion, the stronger the coupling. The

factor of proportionality is mψ
v
.

This means the Higgs boson decay width is dominated by the heaviest particle that can be pair-

produced in the decay. For mh 125 GeV this is the bottom quark. The SM predicts the following

branching ratios for the leading decay modes:

BRbb̄ : BRWW ∗ : BRgg : BRτ+τ− : BRZZ∗ : BRcc̄ = 0.58 : 0.21 : 0.09 : 0.06 : 0.03 : 0.03. (72)

The following comments should be made about the branching ratios (BRs) in Equation (72):

• Of the six BRs, three (b, τ, c) correspond to two-body tree-level decays, meaning that at tree-

level they obey BRbb̄ : BRτ+τ− : BRcc̄ = 3m2
b : m2

τ : 3m2
c . In reality, QCD radiative

corrections somewhat suppress the two modes with quark final states (b, c) compared to the

one with the lepton final state (τ).
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• TheWW ∗ and ZZ∗ modes stand for the three-body tree-level decays where one vector boson

is on-shell and one is off-shell.

• The Higgs doesn’t have tree-level couplings to gluons since it has no colour and the gluons

have no mass. The decay to gluons proceeds via loop diagrams, with the dominant contribution

coming from the top-quark loop.

• Similarly the decay to photons proceeds via loop diagrams with a small (BRγγ 0.002) but

observable rate, with dominant contributions coming from the W and top-quark loops which

interfere destructively.

One of the very nice summary plots from ATLAS experiment in 2022 shows that the Higgs cou-

plings measured during the second data-taking run appear to satisfy the expected relationships with

the particle masses (see Figure Figure 1) [2].

5.5 Summary

Within the SM the fermions have 5 types of interaction which are summarised in Table 3.

Interaction Fermion Force carrier Coupling Flavour

Electromagnetic u, d, ℓ A0 eQ Universal

Strong u, d g gs Universal

NC weak all Z0 e(T3−s2WQ)

sW cW
Universal

CC weak ūd/ℓ̄ν W± gV /g Non-universal/ universal

Yukawa u, d, ℓ h yu,d,ℓ Diagonal

Table 3: Summary of SM fermion interactions
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Figure 1: Reduced Higgs boson coupling strength modifiers and their uncertainties based on the

ATLAS run 2 coupling measurements. The fact that the points lie on a straight line shows that these

are following the expected scaling as a functiuon of particle mass.
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6 Accidental symmetries of the SM

In the absence of the Yukawa matrices, LYuk, the SM has a large U(3)5 global symmetry:

GSM
global(Y

u,d,e = 0) = SU(3)3q × SU(3)2ℓ × U(1)5, (73)

where
SU(3)3q = SU(3)Q × SU(3)U × SU(3)D,

SU(3)2ℓ = SU(3)L × SU(3)E,

U(1)5 = U(1)B × U(1)L × U(1)Y × U(1)PQ × U(1)E.

(74)

Here, (QL1, QL2, QL3) transform as a triplet under SU(3)Q, and so on. Out of the five U(1) charges,

three can be identified with baryon number (B), lepton number (L) and hypercharge (Y ) which are

still respected by the Yukawa interactions. The two remaining U(1) groups can be identified with the

PQ symmetry whereby the Higgs andDR, ER fields have opposite charges, and with a global rotation

of ER only.

It is important to note that LKin respects the non-Abelian flavour symmetry SU(3)3q × SU(3)2ℓ

under which:

QL → VQQL, UR → VUUR, DR → VDDR, LL → VLLL, ER → VEER, (75)

where Vi are unitary matrices. The Yukawa interactions in Equation (14) break the global symmetry,

GSM
global(Y

u,d,e ̸= 0) = U(1)B × U(1)e × U(1)µ × U(1)τ . (76)

Under U(1)B, all quarks (anti-quarks) carry charge +1
3

(
−1

3

)
, while all other fields are neutral. This

explains why proton decay has not been observed. Possible proton decay modes such as p → π0e+ or

p → K+ν are not forbidden by the SU(3)C × U(1)EM symmetry. However they violate U(1)B and

so do not occur within the SM. This is an example of a quite general lesson: the lightest particle that

carries a conserved charge is stable. This accidental U(1)B symmetry also explains why neutron-

anti-neutron oscillations have not been observed. The remaining U(1) factors correspond to electron

number, muon number and tau number respectively. The charges of νe and e are (1,0,0), those of νµ

and µ are (0,1,0) and finally those of ντ and τ are (0,0,1). This situation, for example, allows the

muon decay mode µ− → e−ν̄eνµ but forbids µ− → e−γ and µ− → e−e+e−. It is useful to define the

total lepton number, which is the sum of the of the three lepton flavours and corresponds to a U(1)L

symmetry. This is another accidental symmetry of the SM.
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It should be noted that U(1)B as well as each of the lepton numbers are violated by chiral anoma-

lies. The combination ofB−L, however, is anomaly free as the anomalies cancel. Due to the anoma-

lies, baryon and lepton number violating processes occur non-perturbatively in the SM. However the

non-perturbative effects obey ∆B = ∆L = 3n where n is an integer, and so do not lead to proton

decay. Furthermore, they are very small and can be neglected in almost all cases we study, so they

will not be discussed further here.

The accidental symmetries of the renormalisable part of the SM also explain the vanishing of

neutrino masses. Since all neutrinos are charged under U(1)L, a Majorana mass term violates the

accidental B − L symmetry by two units which prevents mass terms not only at tree level but to all

orders in perturbation theory. Since the B − L symmetry is non-anomalous , Majorana mass terms

do not even arise at the non-perturbative level. We thus conclude that the renormalisable SM gives

the exact prediction that

mν = 0. (77)

The transformations of Equation (75) are not a symmetry ofLSM . Instead they correspond to a change

of the interaction basis. These observations also provide a definition of flavour physics: it refers to

interactions that break the SU(3)5 symmetry ( Equation (75)), meaning that “flavour violation” often

describes processes or parameters that break this symmetry. The quark Yukawa couplings can be

thought of as spurions5 that break the global SU(3)3q symmetry (but are neutral under U(1)B),

Y u
(

3 3̄ 1
)
SU(3)3q

, Y d
(

3 1 3̄
)
SU(3)3q

, (78)

and the lepton Yukawa couplings can be thought of as spurions that break the globalSU(3)2ℓ symmetry

(but are neutral under U(1)e × U(1)µ × U(1)τ ),

Y e (3, 3̄)SU(3)2ℓ
(79)

This spurion formalism is convenient for parameter counting, identification of flavour suppression

factors and for the idea of minimal flavour violation.

6.1 Counting parameters in the SM

To work out the number of independent parameters in LqYuk, we start by considering that the two

Yukawa matrices Y u and Y d are 3× 3 and complex. This means there are 18 real and 18 imaginary
5Spurions are fictitious auxiliary fields in QFT that can be used to parametrise symmetry breaking and determine all parameters

invariant under that symmetry
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parameters in these matrices, however not all of them are physical. The pattern of Gglobal breaking

means there is freedom to remove 9 real and 17 imaginary parameters (this is the number of parameters

in three 3 × 3 matrices minus the phase related to U(1)B). For example, we can use the unitary

transformations QL → VQQL, UR → VUUR and DR → VDDR to lead to the following interaction

basis:

Y d = λd, Y u = V †λu (80)

where λd,u are diagonal

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt) (81)

while V is a unitarymatrix that depends on three real angles and one complex phase. We thus conclude

that there are 10 quark flavour parameters: 9 real ones and a single phase. In themass basis we identify

the nine real parameters as six quark masses and three mixing angles, while the single phase is δKM .

To consider LYukℓ , the Yukawa matrix Y e is 3 × 3 and complex, and consequently there are 9

real and 9 imaginary parameters. There is freedom to remove 6 real and 9 imaginary parameters (the

number of parameters in two 3 × 3 matrices minus the minus the phases related to U(1)3. Its a bit

more involved to justify why the remaining parameters are real.). For example, we can use the unitary

transformations LL → VLLL and ER → VEER to give the following interaction basis

Y e = λe = diag(ye, yµ, yτ ). (82)

We then conclude that there are 3 real lepton flavour parameters. In the mass basis, we identify these

parameters as the three charged lepton masses. However we must modify the model in order to take

into account neutrino masses.

To summarise, combining these parameters with the other parameters of the Standard Model

associated with the interactions and Higgs sector, there are 19 free parameters in total, that are sum-

marised in Table 4. These have to be determined experimentally, after which they can be used in

the theory to make predictions to provide further tests of the SM. The relatively large number of free

parameters in the SM, along with, for example, the existance of three generations of fermions, and

the particular patterns of fermion masses, are often used as motivations for BSM physics.
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Parameter Desrcription

me Electron mass

mµ Muon mass

mτ Tau mass

mu Up quark mass

md Down quark mass

mc Charm quark mass

ms Strange quark mass

mt Top quark mass

mb Bottom quark mass

θ12 CKM 12-mixing angle

θ23 CKM 23-mixing angle

θ13 CKM 13-mixing angle

δ CKM CP-violating phase

g′ U(1)Y Gauge coupling

g SU(2)L Gauge coupling

gs SU(3)C Gauge coupling

θQCD QCD vacuum angle

v Higgs vacuum expectation value

mh Higgs mass

Table 4: The 19 free parameters of the SM (assuming massless neutrinos)
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7 Beyond the SM

We know the SM cannot be a full theory of nature, and instead can be seen as a low energy

effective field theory that is valid below some scale Λ >> mZ . In this case the SM Lagrangian can

be extended to include all non-renormalisable terms, suppressed by powers of Λ:

L = LSM +
1

Λ
Od=5 +

1

Λ2
Od=6 + ... (83)

where Od=n represents operators that are products of SM fields, transforming as singlets under the

SM gauge group, of overall dimension n in the fields. For physics at an energy scale E well below

Λ, the effects of operators of dimension n > 4 are suppressed by
(
E
Λ

)n−4. So in general, the higher

the dimension of an operator, the smaller its effect at low energies.

In the previous sections we have been mainly studying the SM at tree level and with only renor-

malisable terms. The effects of including loop corrections and non-renormalisable terms can be clas-

sified as follows:

• Forbidden processes: various processes are forbidden by the accidental symmetries of the SM.

Non-renormalisable terms (but not loop corrections) can break these accidental symmetries and

allow forbidden processes to occur. Examples include neutrino masses and proton decay.

• Rare processes: these are not allowed at tree-level but can be generated by loop corrections

and non-renormalisable terms, and are often related to accidental symmetries that hold in a

particular sector of the SM but not the full theory. Examples include flavour changing neutral

current (FCNC) processes.

• Tree-level processes: tree-level processes in a particular sector often depend on a small subset

of SM parameters, which can lead to relationships among different processes in that sector.

These relationships are violated by both loop effects and non-renormalisable. Both experimen-

tal precision measurements and precise theory calculations are needed to observe these small

effects. Examples include electroweak precision measurements (EWPM).

For the last two types, where both loop corrections and non-renormalisable terms can contribute, their

use in phenomenology can be divided into two eras. Before all of the SM particles had been directly

discovered and all SM parameters measured, one could assume the validity of the renormalisable SM

and indirectly measure the properties of the yet to be discovered SM particles. The charm quark, top
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quark and Higgs boson masses were all predicted this way. Once all particles have been discovered,

and the parameters measured directly, the loop corrections can quantitatively determined and the ef-

fects of non-renormalisable terms can be unambiguously probed. At present- all three processes serve

as searches for new physics.

8 Neutrinos

In the SM neutrinos are exactly massless, however experimental observations of neutrino oscil-

lations have established that neutrinos have masses. Whilst the individual neutrino mass eigenvalues

are not known, the mass-squared differences are inferred to be [1].

∆m2
21 ≡ m2

2 −m2
1 = (7.53± 0.18)× 10−5(eV)2

∆m2
32 ≡ m2

3 −m2
2 = (2.453± 0.033)× 10−3(eV)2 (normal ordering)

∆m2
32 ≡ m2

3 −m2
2 = (−2.536± 0.034)× 10−3(eV)2 (inverted ordering)

(84)

This is a clear indication of BSM physics. The SM prediction of massless neutrinos is related to the

lepton number symmetry. The SM prediction that neutrinos do not mix is related to the lepton flavour

symmetry. As with other predictions that depend on accidental symmetries of the SM, this can be

violated in generic extensions of the SM. We will now show that d = 5 terms violate the accidental

lepton number and flavour symmetries of the SM, so can be probed by measurements of neutrino

masses and mixings. The model under consideration is the νSM.

There is a single class of dimension-five terms that depend on SM fields and obey the SM sym-

metries. These involve two SU(2)-doublet lepton fields and two SU(2)-doublet scalar fields:

LνSM = LSM +
Zν
ij

Λ
ϕϕLiLj (85)

where Znu is a symmetric and complex 3×3matrix of dimensionless couplings, and Λ is a high mass

scale Λ >> v

8.1 The neutrino spectrum

With ϕ0 acquiring a VEV, ⟨ϕ0⟩ = v√
2
, the Lagrangian in Equation (85) has a piece corresponding

to a Majorana mass matrix for the neutrinos:

LνSM,mass =
1

2
(mν)ijνiνj, (mν)ij =

v2

Λ
Zν
ij (86)

The matrixmν can be diagonalised by a unitary transformation

Vν LmνV
T
ν L = m̂ν = diag(m1,m2,m3). (87)
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Majorana mass matrices are always symmetric, which is why they can be diagonlised by a unitary

transformation, as opposed to bi-unitary transformations used to diagonalise the general massmatrices

earlier in the course Mdiag = VLMV T
R . If we denote the neutrino mass eigenstates as ν1, ν2, ν3. The

convention here is that ν1 and ν2 are separated by the smallest mass-squared difference withm2 > m1.

ν3 is the state with the mass-squared difference from the other two that is largest. Experimentally, we

do not yet know whether it is heavier or lighter than the other two. These two scenarios are referred

to as “normal” and “inverted” ordering respectively. This convention maps on to Equation (84) as

|∆m2
32| > ∆m2

21 > 0

8.2 The energy scale of neutrino mass generation

Themeasured mass (differences) of neutrinos has implications in the model for the scaleΛwhere

they are generated. For experiments probing the low-energy regime, it is the combination Zν

Λ
that is

measured, meaning there is an ambiguity in the definition of Λ and Zν . The separating of the coeffi-

cient of a d = 5 term into a dimensionless coupling and a scale becomes meaningful when we discuss

possible high-energy theories that generate the effective term. The “scale” of a non-renormalisable

term is Λ
Zν

(or whenZν is a matrix it is Λ
Zνmax

whereZν
max is the largest eigenvalue ofZν). If we combine

a measurement of Λ
Zν

with the assumption that Zν is generated by perturbative physics thus Zν
max ≤ 1

translates to an upper bound on Λ. The measured neutrino mass-squared differences in Equation (84)

provide a lower bound on two mass eigenvalues. There must be at least on neutrino mass that is

heavier than
√
|∆m2

32|,

mheaviest ≥
√

|∆m2
32| ≃ 0.05eV (88)

and there is at least one additional mass heavier than
√

∆m2
21 0.009eV. That said, additional experi-

mental and cosmological constraints provide an upper bound on absolute mass scale of the neutrinos

of the order of 1 eV.

The effective Lagrangian in Equation (85), where, by definition Λ >> v predicts that the neu-

trino masses are much lighter than the weak scale

m1,2,3
v2

Λ
<< v (89)

and the fact that we have measured neutrino masses to be much lighter than theW -boson mass makes

it plausable that they could be generated by d = 5 terms. Going further, all SM fermions except the

top-quark are light compared tomW . For the charged fermions this lightness relates to the smallness
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of their Yukawa couplings, but the neutrinos are at least six orders of magnitude lighter than all of the

charge fermions, which could be explained by their being generated by d = 5 terms.

We know that the SM cannot be a valid theory above the Planck scale Λ < MPl and thus expect

that mi ≳ v2

mPl
10−5eV. We can also consider the scale of Grand Unified Theories (GUTs), where

GSM = SU(3)C ×SU(2)L×U(1)Y , the SM gauge group, is assumed to be a subgroup of a unifying

group, such as SU(5) which is spontaneously broken to GSM at some scale ΛGUT = O(1016GeV).

If the d = 5 terms are generated at ΛGUT then we getmν 10
−2eV

On the other hand, an experimental lower bound on neutrino masses provides an upper bound

on the scale of relevant new physics. Using the bound in Equation (88) and the Majorana relations

in Equation (86), we could conclude that the SM cannot be a valid theory above the scale v2

mν
1015GeV

which proves the SM cannot be valid up to the Planck scale. Its also interesting to note that this upper

bound is interestingly close to the GUT scale.

8.3 Neutrino interactions

Adding dimension 5 operators into LνSM leads to significant phenomenological changes in the

lepton sector. Re-writing the neutrino-related terms in the renormalisable part of the SM Lagrangian

in the mass basis we get

LSM,ν = iν̄α/∂να −
g

2cW
ν̄α /Zνα −

g√
2
( ¯ℓLα /W−να + h.c) (90)

where α = e, µ, τ . Note that this Lagrangian describes massless neutrinos and so the basis (νe, νµ, ντ )

serves as both an interaction basis and a mass basis.

The Lagrangian in Equation (85) gives

LνSM,ν = iν̄i/∂νi −
g

2cW
ν̄i /Zνi −

g√
2
( ¯ℓLα /W−Uα iνi + h.c) +miνiνi +

2mi

v
hνiνi +

mi

v2
hhνiνi (91)

where now α = e, µ, τ are the charged lepton mass eigenstates, whilst i = 1, 2, 3 are the neutrino

mass eigenstates. The neutrino mass parameters m1,2,3 are real and the mixing matrix U is unitary.

As with the quark sector previously, starting from an arbitrary interaction basis the matrix U is given

by

U = VeLV
†
ν L. (92)
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whilst each of the VeL and Vν L are basis dependent this combination isn’t. Explicitly we write this as:

U =


Ue1 Ue2 Ue3

Uµ 1 Uµ 2 Uµ 3

Uτ 1 Uτ 2 Uτ 3

 (93)

The most significant differences between LSM,ν and LνSM,ν are

• The leptonic charged current interactions are neither diagonal nor universal and instead involve

the mixing matrix U .

• In LνSM,ν the Higgs boson has Yukawa couplings to neutrinos. These break lepton number.

However size of these Yukawa couplings of the order of mi
v
10−13 so tiny and would generate

a negligible branching ratio for h → νν.

The neutrinos in the νSM thus have three types of interaction mediated by massive bosons:

• Neutral current weak interactions mediated by the Z0 with coupling e
2sW cW

.

• Charged current weak interactions mediated by theW± bosons and couplings given by gU√
2
.

• Yukawa couplings to the Higgs with coupling 2m
v

8.4 Accidental symmetries and the lepton mixing parameters

The dimension five terms added intoLνSM break theU(1)e×U(1)µ×U(1)τ accidental symmetry

of the SM, meaning that the only remaining term in Gglobal
SM is the baryon number symmetry:

Gglobal
νSM = U(1)B (94)

However this symmetry is anomalous and broken by non-perturbative effects, as well as by any di-

mension 6 operators.

The counting of the flavour parameters in the quark sector is the same as before, with 6 quark

masses and four mixing parameters defining the CKM matrix, one of which is imaginary. For the

lepton sector we must now go back to Equation (85). This now includes the 3 × 3 matrix Y e (9 real

and 9 imaginary components) and the symmetric 3×3matrix Zν (6 real and 6 imaginary parameters).

The kinetic and gauge terms have a U(3)L × U(3)E accidental global symmetry that is completely

broken by the Y e and Zν terms. This reduces the number of physical lepton flavour parameters to
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(15R +15I)− 2× (3R +6I) = 9R +3I . 6 of the real parameters are the three charged lepton masses

me,µ,τ and the three neutrino massesm1,2,3. This means that the 3× 3 unitary matrix U depends on 3

real mixing angles and 3 phases.

The difference between the parameters in U and those in the CKM matrix (which only has a

single phase) is that LνSM generates Majorana masses for neutrinos. This means there’s no freedom

in changing the mass basis by redefining the neutrino phases as these would introduce phases into

the neutrino mass terms. Re-definitions of the six quark fields allowed us to remove 5 non-physical

phases from V , but in this case re-definition of the three charged lepton fields only remove three

non-physical phases from U . The two additional phases in U are referred to as Majorana phases as

they appear as a result of assuming Majorana mass terms for the neutrinos. They also impact lepton

number violating processes.

U can be conveniently parametrised as follows

U =


c12c23 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

× diag(1, eiα1 , eiα2) (95)

where α1,2 are the two Majorana phases and sij = sin θij and cij = cos θij .

As of October 2021 the best-fit parameters from the “nu-Fit” collaboration () are as follows (these

correspond to the 3σ confidence intervals:

|U | =


|Ue1| |Ue2| |Ue3|

|Uµ 1| |Uµ 2| |Uµ 3|

|Uτ 1| |Uτ 2| |Uτ 3|

 =


0.801− 0.845 0.513− 0.579 0.143− 0.156

0.232− 0.507 0.459− 0.694 0.629− 0.779

0.260− 0.526 0.470− 0.702 0.609− 0.763

 (96)

When working with the mass basis the formalisms for quark and lepton flavour mixing are very

similar. There are differences however in the way that neutrino experiments are done. Quarks and

charged leptons are identified through their mass eigenstates, however neutrinos can only be identified

as interaction eigenstates (i.e. as νe, νµ, ντ according to whether the produce an e, µ or τ in the detector.

8.5 Outstanding questions

Whilst we can argue that the νSM could provide a consistent model of the neutrino sector, many

parameters are still to be determined:

• The absolute mass scale of neutrinos is still undetermined.
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• It is not known whether the spectrum has normal or inverted ordering.

• The three phases are yet to be measured.

There are also other ways to explain the experimental data, and the following questions could be

relevent to explaining whether the νSM or some other theory provides the best low-energy description

of the neutrino sector:

• Are neutrinos Majorana or Dirac particles?

• Do sterile neutrinos exist? These would be neutrino states uncharged under the SM gauge group

but that mix with the active neutrinos.

• Are there dimension 6 operators that could significantly impact the neutrino sector?

9 Conclusion and acknowledgements

This course has provided a whistle-stop tour of the construction of the Standard Model of par-

ticle physics as a Quantum Field theory with a local SU(3)C × SU(2)L × U(1)Y gauge symmetry

that spontaneously broken into SU(3)C×U(1)EM through the Brout-Englert-Higgs mechanism. The

elementary particles and interactions are discussed along with the predictions and experimental tests

of the model. Finally, the free parameters are enumerated, and outstanding questions and possible

extensions to the Standard Model are discussed. In particular extensions to the SM Lagrangian in-

volving dimension 5 operators that could accommodate Majorana neutrino masses are discussed. Sin-

cere thanks are owed to Professor Yosef Nir for his kind help in providing a copy of the pedagogical

textbook on the Standard Model that he has written with Professor Yuval Grossman.
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A Discrete symmetries and selection rules

A discrete symmetry is one that describes a non-continuous change of the system, and they

sometimes involve “swapping”. Parity is an example of a discrete symmetry and corresponds to

spatial inversion x → −x. A key result in non-relativistic Quantum Physics is that eigenstates of

a “symmetric” potential are also eigenstates of parity. Parity conservation leads to “selection rules”

that determine which lines are possible in atomic emission spectra. In general the term selection rule

applies to constraints on allowed transitions between quantum states, and they occur in both chemistry

but also in nuclear physics.

In QFT, three important discrete spacetime symmetries areC, P and T whereC stands for charge

conjugation (which changes particles into antiparticles by conjugating all their quantum numbers), P

stands for parity (as above) and T symmetry corresponds to invariance under time reversal. The CPT

theorem states any Lorentz invariant local quantum field theory with a Hermitian Hamiltonian must

have CPT symmetry, however each of the individual symmetries have been shown to be violated

in nature. The second law of thermodynamics suggest that time inversion symmetry is violated in

the universe on the macroscopic level. For C and P , As the impact of parity reverses the chirality of

fermion fields, meaning that the combined CP transformation turns a LH particle into a RH antiparticle

(and so on). Direct CP violation can be accommodated in the quark sector of the SM through the CKM

matrix and in the neutrino sector through the PMNS matrix, and is required astrophysically to explain

the excess of matter over antimatter in the universe. Extensions of the SM could provide additional

sources of CP violation. If we assume the CPT theorem holds then CP and T can be considered

equivalent.

To think about selection rules in the SM, an example is that parity is always conserved in strong

and electromagnetic interactions (whilst it can be violated in theweak interaction). Parity conservation

gives additional constraintsd and can forbid processes that might be otherwise allowed kinematically.
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