
Lecture 2: An amateur's 
guide to lattice field theory



Outline 

• Classical mechanics by the principle of least action

• Quantum mechanical evolution, as a path integral.

• Numerical calculations: Monte Carlo and 
imaginary-time evolution.

• Setting up calculating the ground state energy and 
wave function, etc. 

• Example of 1+1 dimensional field theories.



Principle of least action 



Classical mechanics 

• Classical mechanics is usually represented by 
Newton’s three laws (1687).   

• However, Hamilton reformulated the mechanics 
problems using the variational principle. Define the 
lagrangian as,

𝐿 = 𝑇 − 𝑉 =
1

2
𝑚𝑣2 −

1

2
𝑚𝜔2𝑥2

when particle moves from (x1 , t1) to (x2, t2) along a 
path x=x(t), we calculate the action, 

𝑆(𝑥 𝑡 ) = 𝑡1׬
𝑡2 𝐿𝑑𝑡



• The action is different for different path

• The physical path is the one for which the action is 
minimum!  

S

path

Classical mechanics



Euler-lagrange equation

• Using the principle of the least action, one can 
derive the well-known Euler-Lagrange equation



Quantum mechanics 
using classical action



Quantum amplitude

• Consider now a particle at xa when time t=ta. The 
quantum state is  |xa. 

• At time t=tb, the particle can be at xb, with a certain 
probability amplitude (also called Propagator or 
Green’s function)

𝑥𝑏𝑡𝑏 𝑥𝑎𝑡𝑎 = 〈𝑥𝑏 𝑒−𝑖𝐻 𝑡𝑏−𝑡𝑎 /ℏ 𝑥𝑎〉

• It was shown by Feynman that this PA can be 
expressed in terms of path integral

𝑥𝑏𝑡𝑏 𝑥𝑎𝑡𝑎 = ׬ 𝐷𝑥 𝑡 𝑒𝑖𝑆/ℏ

where integration sums up all paths. 



Summing up all paths

• All paths satisfying the boundary condition need be 
included 

• Every path defines an action S

• Every path contribution is weighted with a phase 
factor   𝑒𝑖𝑆/ℏ

• In the classical limit, ℏ → 0, one gets the least 
action principle. 



Classical limit

• By taking ℏ → 0 limit, one shall recover classical 
mechanics. 

• In this case the path integral is dominated by one 
path for which S is minimum, or 

𝛿𝑆 = 0

this is just the least-action principle.

• Any path deviating from this with a finite action 
difference S, will have a phase difference S/ ℏ →
∞, which contributes 0 to the path integral. 



Derivation of the path integral in 
QM 



Completing the derivation



Analytical example: free particle

• In this case, the action is very simple.

• Integration yields (xa=x, xb=y)



Harmonic oscillator 



Propagator for oscillator



Numerical calculation

• For more complicated system, one has to resolve to 
numerical calculation. 

• For few degrees of freedom (d.o.f), one can directly 
solve the Schrodinger equation. 

• However, for a quantum system with a large 
number (often ) of d.o.f, solving Schrodinger eq. is 
no longer an option. Path-integral becomes useful
• Strongly-coupled relativistic quantum field theory such 

as Quantum Chromodynamics (QCD) 
• Non-relativistic quantum many-body systems (many 

electrons or large nuclei with many protons and 
neutrons)



Numerical calculation: 
Monte Carlo and 
imaginary-time evolution



Difficulties with path integral

• For non-trivial quantum systems, one needs to 
make calculations of the path integral numerically 
using a large computer.

• There are two paramount difficulties with 
numerical integrals

• There are infinite number of integrals.

• The integrand can change sign. Therefore, there 
will be a large number of cancellations. 



Approximate infinite number of 
integral with finite number 
• When doing numerical integration, one often 

approximate an integral by a finite sum. 

𝑏׬
𝑎
𝑓 𝑥 𝑑𝑥 = σ𝑖 𝑓 𝑥𝑖 Δ𝑥

• Is it possible that one may approximate the 
continuous infinite number of integrals by a 
discrete, finite number? 
• Not always
• For simple quantum systems, yes.
• In QFT, this is possible only for asymptotically free 

theories, for which the UV is perturbative.



Getting ready for numerical 
calculations  

1

There are n integrals : 
x1, x2 , …, xn



For example, for a 1D particle, the lagrangian, 

𝐿 = σ𝑗=1,𝑛+1{
1

2
𝑚[(𝑥𝑗 − 𝑥𝑗−1)/𝜖]

2 − 𝑣(෤𝑥𝑗)}

Hopefully, systematic error for the path integral goes 
like .



Large number of integrals?? 
Monte Carlo method!
• One killer method to do a 

large number of integrals is 
to use Monte Carlo method. 

• Example: the calculation of 
 is determined by the 
number of shootings in the 
right region. 



Methodology 



Statistical error estimation: 
the secret of why it is powerful 



Example of calculating  with 



Imaginary-time evolution

• For real-time evolution, even the Monte Carlo 
method does not produce reliable answer 

• This is become the action phase can be both 
positive and negative. After summing over a large 
number of positive and negative numbers, the 
result can be exponentially small (sign problem, NP-
hard problem)

• However, the Monte Carlo approach works for 
imaginary time evolution!



1D Statistical Mechanics?! 

• Define the imaginary time,

𝜏 = 𝑖𝑡

One can consider propagator in imaginary time. 
𝑥𝑏𝜏𝑏 𝑥𝑎𝜏𝑎 = 〈𝑥𝑏 𝑒−𝐻 𝜏𝑏−𝜏𝑎 /ℏ 𝑥𝑎〉

In this case, the weighting factor 𝑒𝑖𝑆/ℏ becomes 
𝑒−𝑆𝐸/ℏ, which is the action in Euclidean space

𝑆𝐸 = ׬ 𝑑𝜏 𝑇 + 𝑉 ∼ 𝐻𝛽

• Thus one-DOF QM problem becomes 1D statistical 
mechanics problem. 



Calculating ground state 
energy and wave function, 
with imaginary time 
evolution



Calculate the g.s. energy

• To calculate the g.s. energy, one can start with the 
imaginary time propagator 

𝑥𝑏 𝑒−𝐻𝑇/ℏ 𝑥𝑎 = σ𝑖 𝑒
−𝐸𝑖𝑇/ℏ𝜓𝑖 𝑥𝑏 𝜓𝑖 𝑥𝑎

∗

at large time t, it is dominated by the ground 
state, i= 0, or 

→ 𝑒
−𝐸𝑜𝑇/ℏ𝜓0 𝑥𝑏 𝜓0 𝑥𝑎

∗

Plotting the log of this as a function of T, the slop 
gives the g.s. energy. 

Varying xb or xa will generate the ground state wave 
function. (or let xa=xb, will give 𝜓0 𝑥 2)



Practical consideration for HO 

• For a piratical H.O. problem, we consider a time 
lattice, 

• To have large enough T, one has to have 

𝑇 ≫
2𝜋

𝜔
= 𝜏0

• On the other hand, time-interval Δ𝑡 = 𝑎 shall be 
much smaller than 2𝜋/𝜔, the classical period.

t1 t2 tN



Practical consideration

• Thus, choosing 2𝜋/𝜔=1,

then          a = 0.1

one can choose T = 10 forming a hierarchy

𝑇 ≫
1

ℏ𝜔
≫ 𝑎

correspondingly, T can also be 9, 8, 7, 6, 5, 4…

• Then， N = 100，90， 80， 70， 60， etc.



Rescale coordinates  

• As to calculate the action, one can rescale x by  

ො𝑥 =
𝑚

ℏ
𝑥 = 𝜔𝑥/𝑏

and the rescaled action is

S/ℏ = σ𝑗=1,𝑛+1{
1

2𝜔
[( ො𝑥𝑗 − ො𝑥𝑗−1) /𝜖]2 + 𝜔/2 ෤𝑥𝑗

2 )}

• Each configuration consists of N { ො𝑥𝑗}

• One needs a large number of configuration C to 
calculate the two-point function. 



Solving one dimensional 
QFT  



N coupled oscillators



1D chain (ring)

• We label oscillators by i = 1, 2,…., N, with periodic 
condition such that i=0 and N are identical. 

• Each oscillator has 1D coordinate 𝑥𝑖 = 𝑖𝑎, where a can 
be viewed as the basic length unit.  

• The total kinetic energy,

𝑇 =
1

2
𝑚σ𝑖=1,𝑁 ሶ𝑞2(𝑖𝑎) where dot is the t-derivative

• The total potential energy    ([N+1]=1)    



Equations of motion (E.O.M)

• The EOM are coupled linear differential equations

• We can diagonalize these Eqs by introducing the 
normal coordinates,  

ℓ 𝐦𝐮𝐬𝐭 𝐛𝐞 𝐢𝐧𝐭𝐞𝐠𝐞𝐫
ℓ = 𝟎 𝐢𝐬 𝐳𝐞𝐫𝐨 −
𝐦𝐨𝐝𝐞



Zero mode etc

• The periodic boundary condition is satisfied. 

• There is always one zero mode. Zero-mode l=0 
corresponds all coordinates move together. The 
potential energy is zero. It is a free motion.

• For N=3, there are two additional modes 
corresponds to l=1. 

• For N=4, there are three additional modes, 
correspond to l= 1, 2. The mode l=−2 is the same 
as l=2. 

• Positive and negative l’s are complex conjugate of 
each other, with opposite chirality. 



Normal mode dynamics

• The lagrangian of the normal modes are

• Introduce the canonical coordinates,

• New Hamiltonian is a sum of non-interacting 
normal modes 

H



Dispersion relation and 
quantization 

• Dispersion relation: Frequency related to different k

• Introduce creation and annihilation operators  

• Now we have N-non-interacting harmonic oscillators, 



• It is interesting to note that even though every 
term of pot. energy seems to support an oscillator 

with angular frequency =√{
𝑘

𝑚
}, the normal modes 

can have a range of angular frequency, going from 0 
to 2.



Quantum states 

• The ground state of the system is when all oscillators 
are the ground state 

|0,0,….,0 with 𝐸0 =
ℏ

2
σ𝜔𝑘𝑙 (vacuum energy)

The w. f. is   kl 0(ukl) which is a complicated function 
of the original coordinates. 

• The first excited state is  a set of states with one 
quantum in one of the oscillators (kl)

|0,1,….,0 with energy E(kl)=E0+ℏ𝜔𝑘𝑙

which has the excitation energy  E(kl)= ℏ𝜔𝑘𝑙 .

Only the excitation energy is measurable experimentally!



Taking continuum limit 

• Let a→0 and N→,  Na=L finite, we have infinite 
number of quantum mechanical degrees of 
freedom (field theory!)

we define a field through 



More on the limit

• In the a→0, we pack  number of dof in the finite 
line segment L. 

• Correspondingly, there are infinite number of non-
interacting normal modes corresponding to 

𝑘 =
2𝜋

𝐿
𝑙 with l = 0, 1, 2, …, 

Now   = (0a) k (k is still discrete)

now 0a  has a unit of velocity, 𝑣𝑠 it is the sound 
speed in this one dimensional medium.

Thus  = 𝑣𝑠𝑘,



Wave equation 

• The classical e.o.m now becomes the wave equation

whereas 𝑘 =
𝜔

𝑣𝑠
= 2𝜋/𝜆 where 𝜆 is the wavelength. 

• Thus in this finite-length L, 1D system (a string), with 
number of h.o., one equivalently can represent the system 
by infinite number of waves with variable k.  

q is the wave field. Large k means small w.l. (UV mode),    

small k means large w.l. (IR mode), smallest are ±
2𝜋

𝐿
𝑎𝑛𝑑 0.



Single oscillator and continuous 
wave (classical)



1D classical field theory

• 1D field theory deals with this 1D systems of waves. 

• In the above example, we have free waves, i.e., the 
waves do not interact. 

• However, more meaningful examples deals with 
waves that interact. 

• We can easily add interactions when using 
Lagrangian dynamics for the field theory. 



Quantum mechanical wave 

• In QM, particles are described by QM waves, just 
like that the electron is described by electron wave. 
For non-relativistic particles, they are described by 
waves satisfying Schrodinger eq. which corresponds 
to  𝐸 = 𝑝2/2𝑚

• For a relativistic QM particle, it shall satisfy the 
relativistic wave equation. 

• For a free particle, relativistic w.e. shall be derived 
from 𝐸2 = 𝑝2𝑐2 + 𝑐4𝑚2, where m is the rest mass.



Klein-Gordon equation 

For the relativistic energy-momentum relation, one can 
derive the following wave equation 

This is famous Klein-Gordon equation. Comparing to our 
earlier example, one has an extra mass term

𝑚2𝑐2

ℏ2

which has the Planck constant ℏ, indicating it is a 
Quantum w.e.

It reduced to the Schrodinger eq. in small velocity limit. 



Quantum field theory: quantized 
theory of waves  
• In relativistic theories, the mass and energy can 

convert into each other. 

• Thus, particles can disappear into energy, and 
reversely energy can create particles. 

• The single particle quantum mechanics as 
described by Klein-Gordon eq. is useless. One 
needs a theory which can create and annihilate 
particles. 

• For this, one needs to discuss the quantized wave 
systems (coupled h.o.) or quantum  dof systems 
or quantum field theory. 



Quantization of 1+1 wave system

• One needs to quantize 1+1 dimensional wave 
system, which is in a sense already quantum 
mechanical (it contains Planck const).

• One can quantize by assuming the field (x,t) is an 
operator and find the conjugate field operator (x,t)

and postulate commutation relations among 
quantum field

• However, for a numerical approach, the above 
strategy is of little use. One can again, however, use 
Feynman’s path integral approach. To do this, we 
need to start with a lagrangian. 



Lagrangian for a field 

• The lagrangian is a sum over all modes, thus

L = ׬ 𝐿𝑑𝑥

where the lagrangian density can be written as 

𝐿 =
1

2
𝜙𝑡
2 −

1

2
𝜙𝑥
2 −

1

2
𝑚2𝜙2. 

One can verify that EL eq. reproduces KG eq.

When quantized, the first excited state of the system 

with a set of h.o. angular frequency,

𝜔2 = 𝑘2 +𝑚2

describes a particle of mass m and momentum k. 



Introducing interactions 

• 1D interaction-free field theory is very simple and not 
interesting. 

• To make a non-trivial field theory, we can introduce an 
interaction term 

L= −
𝜆

4!
𝜙4

with 0, so that the total energy has a lower bound.

• It can be shown that the system still supports a free 
propagating wave as the first excited state of the 
system, corresponding to a “physical particle” with 

non-trivial internal structure. 



Euclidean time 

• Again to make numerical calculation possible, one 
has to use Euclidean time 

• One needs to consider evolution in imaginary time.

• 1D quantum wave system has a similar formulation 
as 2D statistical mechanics system.  



Ground state and filtering 

• Again label the exact ground state of 1+1 field 
theory as

0

• A quantum wave with momentum k=0 can be 
generated by 

෠𝜙𝑘=0(𝜏 = 0）|0〉

which can be expanded into a set of exact 
eigenstates. After long “time” T, 

𝑒−𝑇𝐻 ෠𝜙𝑘=0 𝜏 = 0 0 ∼ 𝑒−𝑇𝑀|𝑘 = 0〉

Only the first excited with k=0 remains.



Two-point correlation function 

• Now define the two-point correlation function

0 ෠𝜙 𝑥, 𝑇 ෠𝜙𝑘=0 𝜏 = 0 0

which reduces to at large T,

𝐶2 𝑇,𝑀  𝑐𝑒−𝑇𝑀

Thus by studying the large-T behavior of the of the 
two-point correlation function, one can get the 
physical mass M, as the energy or frequency 
corresponding to k=0. 



Calculating “dispersion”
relation
• To find the dispersion relation, E(k), one can 

calculate the two-point correlation function

C2 𝑘, 𝑇 = 0 ෠𝜙 𝑥, 𝜏 = 𝑇 ෠𝜙𝑘 𝜏 = 0 0

• At large T, the first excited state with momentum k 
dominates, which produces the following 
exponential

C2 𝑘, 𝑇, 𝐸 ∼ 𝑒−𝐸 𝑘 𝑇

one can get the E(k) by checking the leading large-T 
behavior 



Lattice implementation 

• Two-point function as a functional integral

𝐶2 𝑘, 𝑇 =
׬ 𝐷𝜙 𝑥, 𝜏 𝜙 𝑥, 𝑇 ׬ 𝑑𝑦𝜙 𝑦, 0 𝑒−𝑆𝐸

where the action is 

𝑆𝐸 = ׬ 𝑑𝑥𝑑𝜏[
1

2
𝜙𝑡
2 +

1

2
𝜙𝑥
2 +

1

2
𝑚2𝜙2 +

1

4!
𝜆𝜙4]

where again  is positive and dimension-2. 



Lattice calculation 

• We consider field configurations in 2-D lattice, with 
N points in “time” as well as  space directions, N2. 

• Assume the lattice spacing is a in both directions.

Thus，the size of the box is L=Na.

• To simulate the theory well, one needs to have 
1

𝐿
≪ 𝑚， 𝜆 ≪

1

𝑎

where 1/a is the UV cut-off and 1/L is IR cutoff. 



Lattice implementation

• On the lattice, one has 𝜙𝑖𝑗 degrees 

of freedom with I, j = 1, …., N

with periodic boundary condition

𝜙𝑖+𝑁,𝑗+𝑁 = 𝜙𝑖𝑗

• One generate configuration {𝜙𝑖𝑗} using Monte 
Carlo method

𝐶2 𝑘,𝑚, 𝑇 = σ𝜙(𝑥 , 𝑇)σ𝑦 𝑒
𝑖𝑘𝑦 𝜙(𝑦, 0)



Actual consideration

• For 2D simulation, a reasonable choice is N=100. 

If we one choose, m=1, =1, a=0.1, L=10. 

• Finite-volume effect

one can do the same simulation, but with N=500, L=50 
with the same a, m, . 

• Finite-a effect: one can do the same simulation with 
a=0.05, N=200, or a=0.02, N=500. 

Thus mass M will have lna-dependence, which can be 
computed in pert. theory.

• The continuum limit exists when all physical 
observables are expressed in terms of M and . 



Consideration in lattice QCD

• Hadron has sizes about 1fm. One needs at least 10 
point in each direction, a = 0.1fm.

• One needs to have an hadron moving freely in a box, 
L=3~4 fm. Thus lattice size can be L=32,64,96,128 
points in each direction.

• The simplest will be 32^4. 
• One needs to put quarks and gluons on the lattice in a 

gauge-invariant way (K. Wilson)
• Fermions must be integrated out (as classically they are 

grassmann numbers)
• Small fermion mass calculations present a great 

challenge.



Hadron Masses from Lattice QCD

Ab Initio Determination of Light 
Hadron Masses
S. Dürr, Z. Fodor, C. Hoelbling,
R. Hoffmann, S.D. Katz, S. Krieg, T. 
Kuth, L. Lellouch, T. Lippert, K.K. 
Szabo and G. Vulvert

Science 322 (5905), 1224-1227
DOI: 10.1126/science.1163233

(2008)

589 citations



Neutron-Proton Mass Difference in Lattice QCD

281 Citations

Ab initio calculation of the neutron-proton mass 
difference
Sz. Borsanyi, S. Durr, Z. Fodor, 
C. Hoelbling, S.D. Katz,S. Krieg, 
L. Lellouch, T. Lippert, A. Portelli, 
K. K. Szabo, and B.C. Toth

Science 347 (6229), 1452-1455
DOI: 10.1126/science.1257050

How does QCD generate this?  The role of quarks and of gluons?
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