Lecture 2: An amateur's
cuide to lattice field theory



Outline

* Classical mechanics by the principle of least action
* Quantum mechanical evolution, as a path integral.

e Numerical calculations: Monte Carlo and
imaginary-time evolution.

 Setting up calculating the ground state energy and
wave function, etc.

* Example of 1+1 dimensional field theories.



Principle of least action



Classical mechanics

* Classical mechanics is usually represented by
Newton’s three laws (1687).

 However, Hamilton reformulated the mechanics
problems using the variational principle. Define the
lagrangian as,

1 1
L=T-V =Emv2 —Emwzxz

when particle moves from (x, , t;) to (x,, t,) along a
path x=x(t), we calculate the action,

S(x(t) = [ ttlz Ldt



* The action is different for different path

* The physical path is the one for which the action is
minimum/!

/ path

Classical mechanics



Euler-lagrange equation

e Using the principle of the least action, one can
derive the well-known Euler-Lagrange equation

t2
f oLdt=0.
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Quantum mechanics
using classical action




Quantum amplitude

* Consider now a particle at x, when time t=t_. The
quantum stateis |x,).

* At time t=t, the particle can be at x,, with a certain
probability amplitude (also called Propagator or
Green’s function)

(xptplxaty) = (xp ‘e_iH(tb_t“)/h‘xa)

* It was shown by Feynman that this PA can be
expressed in terms of path integral

(xXptplxgty) = f [Dx(t)]eis/h
where integration sums up all paths.



Summing up all paths

* All paths satisfying the boundary condition need be
included

* Every path defines an action S

* Every path contribution is weighted with a phase
factor e!S/M

* In the classical limit, i — 0, one gets the least
action principle.

B



Classical limit

* By taking i = 0 limit, one shall recover classical
mechanics.

* In this case the path integral is dominated by one
path for which S is minimum, or

0S =0
this is just the least-action principle.

* Any path deviating from this with a finite action
difference AS, will have a phase difference AS/ i —
oo, which contributes O to the path integral.



Derivation of the path integral in
QM
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Completing the derivation
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The transition amplitude can be written
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Analytical example: free particle

* In this case, the action is very simple.

z(T)=y T 3-:2
K(m—y;T):f exp(—f —dt) Dz.
z(0)=z 0 2

Splitting the integral into time slices:

K(o,4:T) = /;w{T =y H exp (_% (:L‘(t + si — z(t) )25) Dz,

0)==z

* Integration yields (xa=x, xb=y)

i(z—y)?

Kz—y;T)xe 2r




Harmonic oscillator

sinw(ts — t) sinw(t —t;)

zc(t) =2 z .
o(t) = = sinw(ts — t;) d sinw(ts — t;)

This trajectory yields the classical action

2 2

tf tf
S. = Ldt = f (lm:i:2 — l1rn.m2:z:2) dt
t; t

= —mw

1 ((mf +a%) cosw(ty —t;) — 23,—,:1:;)
2

sinw(ty — t;)

Next, expand the non-classical contribution to the action 65 as a Fourier series, which gives

o] 2
=8+ itaz (t(:m)t- —wz(tf—t,-)).

n=1

This means that the propagator is

e 29 jﬂf i ,m [ (jm)?
K(zs trzi,t;) = =~ [ da; —a2— —wt(ty —t;
(zf,t552i,t:) = Qe'n Hﬁ s | paiy \ g —g ¥ (ts —t:)
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~Foff (- (42) )
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Propagator for oscillator

Let I'= {p— I;. One may write this propagator in terms of energy eigenstates as

1

mw 2 i
K(zp,tr2it) = (2'mlhsian) e (E%m

(2} +2%) coswT — 2:51-:1:;)

sin wT

Zexp (_ iE’:T)@bn(mf)*"pn (z:) .
n=>0



Numerical calculation

* For more complicated system, one has to resolve to
numerical calculation.

* For few degrees of freedom (d.o.f), one can directly
solve the Schrodinger equation.

* However, for a quantum system with a large
number (often o) of d.o.f, solving Schrodinger eq. is
no longer an option. Path-integral becomes useful

e Strongly-coupled relativistic quantum field theory such
as Quantum Chromodynamics (QCD)

* Non-relativistic guantum many-body systems (many
electrons or large nuclei with many protons and
neutrons)



Numerical calculation:
Monte Carlo and
imaginary-time evolution




Difficulties with path integral

* For non-trivial quantum systems, one needs to
make calculations of the path integral numerically
using a large computer.

* There are two paramount difficulties with
numerical integrals
* There are infinite number of integrals.

* The integrand can change sign. Therefore, there
will be a large number of cancellations.



Approximate infinite number of
integral with finite number

 When doing numerical integration, one often
approximate an integral by a finite sum.

[ fOdx = 3, f(x)Ax

* |s it possible that one may approximate the
continuous infinite number of integrals by a
discrete, finite number?

* Not always
e For simple quantum systems, yes.

* |n QFT, this is possible only for asymptotically free
theories, for which the UV is perturbative.



Getting ready for numerical
calculations

For a particle in a smooth potential, the path integral is approximated by zigzag paths, which in one dimension

is a product of ordinary integrals. For the motion of the particle from position x, at time 7, to x; at time 7, the

time sequence
to =te<hh < - <haa<tpa <tps1 =1t
can be divided up into » + 1 smaller segments t; —1t;_ 1, wherej = I, ..., n+ 1, of fixed duration

tb _ta

= At = .
& n+1

This process is called time-slicing.

An approximation for the path integral can be computed as proportional to

o 4w There are n integrals :
— L(z(t),v(t)) dt ) dzy - - - dzy,
£ ‘0/0‘ exp(ﬁ./t; ($( )sv( )) ) ] z X1' X2 A Xn

where L(x, v) is the Lagrangian of the one-dimensional system with position variable x(7) and velocity v = x(7)
considered (see below), and dx}- corresponds to the position at the jth time step, if the time integral is

approximated by a sum of » terms.[" 2}



. the abovementioned "zigzagging" corresponds to the appearance of the terms

. n+l
2 . T —Tj-1
exp(ﬁeg L(mj, j 63 ,3))
3=1

in the Riemann sum approximating the time integral, which are finally integrated over x; to x,, with the

~ X +.?(-_1

integration measure dxy...dx,,, X ; is an arbitrary value of the interval corresponding to j, e.g. its center, ~——="—.

For example, for a 1D particle, the lagrangian,

L= ijl,n+1{%m[(xj — xj—1)/€]* — v(%;)}

Hopefully, systematic error for the path integral goes
like €.



Large number of integrals??
Monte Carlo method!

* One killer method to do a
large number of integralsis 1
to use Monte Carlo method.

0.5F

* Example: the calculation of
7 is determined by the
number of shootings in the
right region.

of « .




Methodology

I=[ﬂf(i)di

where Q, a subset of R, has volume

szdi
Q

The naive Monte Carlo approach is to sample gn Q:14] givey
X1, -, XN €,
I can be approximated by
1 &
IQy=V=) f(X:)=V(f).

N i=1

This is because the law of large numbers ensures that

lim QN =1

N—>oo



Statistical error estimation:
the secret of why it is powerful

1 L
Var(f) = o} = 5 > (F(:) — (M)’
i—1
which leads to

Var(f)
N

V2L o}
Var(@Qn) = ;Var(f) =V? = VZWN.

As long as the sequence
{ol,0%:0%,---}

is bounded, this variance decreases asymptotically to zero as 1/N. The estimation

ON

\/I_V’

. This is standard error of the mean multiplied with V. T

0Qn = 4/Var(Qn) =V

1

=

vN

which decreases as



Example of calculating m with

A paradigmatic example of a Monte Carlo

integration is the estimation of m. Consider

the function 107

1 ifz?+y2 <1 :
By ={; 55705 |

and the set Q = [-1,1] x [-1,1] with V = 4. " i ‘\l |

Notice that S X
10°F - E
I,,—fH(a:,y)da:dy—m i N
0 -
Thus. a crude wav of calculating the value .| I BT RN BT BT
. W ‘ atng ‘ e 10 10 10 1d 10
of m with Monte Carlo integration is to pick Number of samples (N)

N random numbers on Q and compute . .
Relative error as a function of the number of samples,

: : 1
1 & showing the scaling ——
QN=4EEZ=;H(E¢,%) VN

In the figure on the right, the relative error On-r is measured as a function of N, confirming the ﬁ




Imaginary-time evolution

e For real-time evolution, even the Monte Carlo
method does not produce reliable answer

* This is become the action phase can be both
positive and negative. After summing over a large
number of positive and negative numbers, the
result can be exponentially small (sign problem, NP-
hard problem)

* However, the Monte Carlo approach works for
imaginary time evolution!



1D Statistical Mechanics?!

e Define the imaginary time,
T =1t
One can consider propagator in imaginary time.
(XpTp|XaTa) = (xp|e HTb~T)/R|x )
In this case, the weighting factor e*>/" becomes
—SE/" \which is the action in Euclidean space
Sy = [ dt[T +V] ~ HB

* Thus one-DOF QM problem becomes 1D statistical
mechanics problem.

e



Calculating ground state
energy and wave function,
with imaginary time
evolution



Calculate the g.s. energy

* To calculate the g.s. energy, one can start with the
Imaginary time propagator
_ —E;iT/h *
(xeple T/ |xq) = e~ My (o )1 ()
at large time t, it is dominated by the ground
state, 1= 0, or
—E T/ *
e g ()0 (%)

Plotting the log of this as a function of T, the slop
gives the g.s. energy.

Varying xb or xa will generate the ground state wave
function. (or let xa=xb, will give |1y (x)|?)



Practical consideration for HO

* For a piratical H.O. problem, we consider a time
lattice,

* To have large enough T, one has to have
T>» =1,
w

* On the other hand, time-interval At = a shall be
much smaller than 2m/w, the classical period.



Practical consideration

* Thus, choosing 2 /w=1,
then a=0.1

one can choose T = 10 forming a hierarchy

1

T>—>a
hw

correspondingly, Tcan alsobe 9, 8,7, 6, 5, 4...
e Then, N=100, 90, 80, 70, 60, etc.



Rescale coordinates

* As to calculate the action, one can rescale x by

X = %x = \wx/b
and the rescaled action is

1 (,n A -
S/h = Zj=1,n+1{£ [(x] — j—1) [€]2 + w/2 sz )}
* Each configuration consists of N {X;}

* One needs a large number of configuration C to
calculate the two-point function.



Solving one dimensional
QFT



N coupled oscillators

1 2
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1D chain (ring)

* We label czscillators byi=1, 2,...., N, with periodic
condition such that i=0 and N are identical.

* Each oscillator has 1D coordinate x; = ia, where a can
be viewed as the basic length unit.

* The total kinetic energy,
1 0.
T =-m Y.i—1n G*(ia) where dot is the t-derivative

* The total potential energy ([N+1]=1)

—_

N,
— Z (q(na) — q(] H—I—l:u}}?.

n=1

]



Equations of motion (E.O.M)

 The EOM are coupled linear differential equations

oV
{'i}g[!m}
= —A (2@(”(1] — (j([” — 1:”} - f}([” L 1]”))

mg(na) = —

* We can diagonalize these Eqgs by introducing the
normal coordinates,

N L y 11 u
vV Na ks £ must be integer
£ = 01is zero —

k= 7=l with [ =0, £1,£2, - - % Hode




/ero mode etc

* The periodic boundary condition is satisfied.

* There is always one zero mode. Zero-mode |=0
corresponds all coordinates move together. The
potential energy is zero. It is a free motion.

e For N=3, there are two additional modes
corresponds to |=%1.

 For N=4, there are three additional modes,
correspond to I= %1, 2. The mode |=-2 is the same
as [=2.

* Positive and negative I's are complex conjugate of
each other, with opposite chirality.



Normal mode dynamics

* The lagrangian of the normal modes are

m . . It _ )
L= ) Z Uy U—fp — 5 ZE (1 — -:f'.l__l!-%(fu'j_r_r'f)] Uy U

= i

ki ki

* Introduce the canonical coordinates,
AL
Juy,
L

Ou_p,

* New Hamiltonian is a sum of non-interacting

normal modes

1 1.
H = Z (mﬁk:f}k; + 5!”;:.)& U, H;‘,{) )

ki N

Phy, = = MU_},

Pk, = = Mg, .



Dispersion relation and

guantization

* Dispersion relation: Frequency related to different k

\/Qh' (l — (Z‘(.,JHUx'gu }}
;_&;ks =

m

0=(2/a)vg sin ka/2

w
"t Brilluin Zope _~
k| .  ka " '
=2 —5111(;—)‘
m 2
-nia 0 /e

* Introduce creation and annihilation operators

{}k: = .

ap, =

MW,
2F

Ty,

2h

, i
(H_;ﬁ + }-’kg)
MW,
ﬂ r
Uy, — Pl | -
mwi,

* Now we have N-non-interacting harmonic oscillators,

H=) H
kq

' 1
o -1 -
Hi, = hwy, (”kg”kl +35



* It is interesting to note that even though every
term of pot. energy seems to support an oscillator

with angular frequency oo=\/{%}, the normal modes

can have a range of angular frequency, going from 0

to 2m.
)

__ . 1st Brillpuin Zone -

W={2/3)Wg sin kcz/2

/e 0 /e



Quantum states

* The ground state of the system is when all oscillators
are the ground state
|0,0,....,00 with E, = ngkl (vacuum energy)
The w. f. is IT,,@,(ux) which is a complicated function
of the original coordinates.

* The first excited state is a set of states with one
guantum in one of the oscillators (ki)

10,1,....,0) with energy E(ki)=Ej+hwy,
which has the excitation energy AE(ki)= hwy,.

Only the excitation energy is measurable experimentally!



Taking continuum limit

* Let a—0 and N—oo, Na=L finite, we have infinite

number of quantum mechanical degrees of
freedom (field theory!)

we define a field through

(o) =ty 72 = i e 3T an0e = 2 3D

N, ,— oo N, —o0o

, ) (7
p(x,t) = lim P } = lim

—ﬂs,r L —zk:;:
a—0 \/E a%ﬂ 1;’ Zj k \/_ Zj”‘ |

N,—oo



More on the limit

* In the a—0, we pack coc number of dof in the finite
line segment L.

* Correspondingly, there are infinite number of non-
interacting normal modes corresponding to

k = 27”1 with1=0 +1, 42, ... oo

Now ® = (m,a) k (k is still discrete)

now mya has a unit of velocity, vy it is the sound
speed in this one dimensional medium.

Thus ® = vk,



Wave equation

* The classical e.o.m now becomes the wave equation

1 92 92 -
o~ ) 1) =0

whereas k = vﬁ = 21 /A where A is the wavelength.

* Thus in this finite-length L, 1D system (a string), with oo
number of h.o., one equivalently can represent the system
by infinite number of waves with variable k.

g is the wave field. Large k means small w.l. (UV mode),
small k means large w.l. (IR mode), smallest are iZTn and 0.



Single oscillator and continuous
wave (classical)




1D classical field theory

e 1D field theory deals with this 1D systems of waves.

* In the above example, we have free waves, i.e., the
waves do not interact.

* However, more meaningful examples deals with
waves that interact.

* We can easily add interactions when using
Lagrangian dynamics for the field theory.



Quantum mechanical wave

* In QM, particles are described by QM waves, just
like that the electron is described by electron wave.
For non-relativistic particles, they are described by
waves satisfying Schrodinger eq. which corresponds
to £ = p?/2m

 For a relativistic QM particle, it shall satisfy the
relativistic wave equation.

* For a free particle, relativistic w.e. shall be derived
from E% = p?c? + c¢*m?, where m is the rest mass.



Klein-Gordon equation

For the relativistic energy-momentum relation, one can
derive the following wave equation

1 & 3 mic?
E—Eﬂt.‘!w—?-w— v i = 0.

This is famous Klein-Gordon equation. Comparing to our

earlier example, one has an extra mass term

m?2c?

hZ
which has the Planck constant 71, indicating it is a
Quantum w.e.

It reduced to the Schrodinger eq. in small velocity limit.




Quantum field theory: quantized
theory of waves

* In relativistic theories, the mass and energy can
convert into each other.

* Thus, particles can disappear into energy, and
reversely energy can create particles.

* The single particle quantum mechanics as
described by Klein-Gordon eq. is useless. One
needs a theory which can create and annihilate
particles.

* For this, one needs to discuss the quantized wave
systems (coupled h.o.) or quantum oo dof systems
or qguantum field theory.



Quantization of 1+1 wave system

* One needs to quantize 1+1 dimensional wave
system, which is in a sense already quantum
mechanical (it contains Planck const).

* One can quantize by assuming the field ¢(x,t) is an
operator and find the conjugate field operator m(x,t)

and postulate commutation relations among
quantum field

 However, for a numerical approach, the above
strategy is of little use. One can again, however, use
Feynman’s path integral approach. To do this, we
need to start with a lagrangian.



Lagrangian for a field

* The lagrangian is a sum over all modes, thus
L= [ Ldx
where the lagrangian density can be written as
L=357 — 307 —;m*¢”.
One can verify that EL eq. reproduces KG eq,.
When quantized, the first excited state of the system
with a set of h.o. angular frequency,
w? = k? + m?

describes a particle of mass m and momentum k.



Introducing interactions

* 1D interaction-free field theory is very simple and not
interesting.

* To make a non-trivial field theory, we can introduce an
interaction term

_ A s
L= —qu
with A>0, so that the total energy has a lower bound.

* |t can be shown that the system still supports a free
propagating wave as the first excited state of the
system, corresponding to a “physical particle” with

non-trivial internal structure.



Fuclidean time

* Again to make numerical calculation possible, one
has to use Euclidean time

* One needs to consider evolution in imaginary time.

e 1D quantum wave system has a similar formulation
as 2D statistical mechanics system.



Ground state and filtering

e Again label the exact ground state of 1+1 field
theory as

|0)

* A quantum wave with momentum k=0 can be
generated by

Q;Sk:O(T =0) |0)
which can be expanded into a set of exact
eigenstates. After long “time” T,

e ™Hepy_o(t = 0)]0) ~ e ™|k = 0)
Only the first excited with k=0 remains.



Two-point correlation function

* Now define the two-point correlation function

(0| (x, T) = (r = 0)|0)
which reduces to at large T,
Co(T,M)~ce™™

Thus by studying the large-T behavior of the of the
two-point correlation function, one can get the
physical mass M, as the energy or frequency
corresponding to k=0.



Calculating “dispersion”
relation

* To find the dispersion relation, E(k), one can
calculate the two-point correlation function

C,(k, T) = (0|p(x, T = T)dr(r = 0)|0)

e At large T, the first excited state with momentum k
dominates, which produces the following
exponential

C,(k, T, E) ~ e EGIT

one can get the E(k) by checking the leading large-T
behavior



Lattice implementation

* Two-point function as a functional integral
CZ (k) T) —
[ [D(x, D]pCx, T dyd(y, 0)eSE
where the action is
Sp = J dxdtlz 7 + 22 +2m2¢p? + = A¢p*]

where again A is positive and dimension-2.



Lattice calculation

* We consider field configurations in 2-D lattice, with
N points in “time” as well as space directions, N2.

* Assume the lattice spacing is a in both directions.
Thus, the size of the box is L=Na.
* To simulate the theory well, one needs to have

—«<m, V1=
where 1/a is the UV cut-off and 1/L is IR cutoff.



Lattice implementation 4

* On the lattice, one has ¢;; degrees
of freedom with I, j=1, ...., N

with periodic boundary condition
Di+n,j+n = Pij

* One generate configuration {¢;;} using Monte
Carlo method

Co(k,m, T) = X ¢(x,T) Xy e ¢(y,0)



Actual consideration

* For 2D simulation, a reasonable choice is N=100.
If we one choose, m=1, A=1, a=0.1, L=10.
* Finite-volume effect

one can do the same simulation, but with N=500, L=50
with the same a, m, A.

* Finite-a effect: one can do the same simulation with
a=0.05, N=200, or a=0.02, N=500.

Thus mass M will have Ina-dependence, which can be
computed in pert. theory.

* The continuum limit exists when all physical
observables are expressed in terms of M and A.



Consideration in lattice QCD

 Hadron has sizes about 1fm. One needs at least 10
point in each direction, a = 0.1fm.

* One needs to have an hadron moving freely in a box,
L=3~4 fm. Thus lattice size can be L=32,64,96,128
points in each direction.

* The simplest will be 3274,

* One needs to put quarks and gluons on the lattice in a
gauge-invariant way (K. Wilson)

* Fermions must be integrated out (as classically they are
grassmann numbers)

* Small fermion mass calculations present a great
challenge.



Hadron Masses from Lattice QCD

3 R (2008)
~ Ab Initio Determination of Light
SClence Hadron Masses 2000 _
S. Durr, Z. Fodor, C. Hoelbling, .
‘ R. Hoffmann, S.D. Katz, S. Krieg, T. ] Q0
Kuth, L. Lellouch, T. Lippert, K.K. 1500 - —=="
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Neutron-Proton Mass Difference in Lattice QCD

(o o] it~ gl Bl el Ab initio calculation of the neutron-proton mass

difference 10
Sz. Borsanyi, S. Durr, Z. Fodor,

— experiment
e QCD+QED | -~

C. Hoelbling, S.D. Katz,S. Krieg, | A :
L. Lellouch, T. Lippert, A. Portelli, 8
K. K. Szabo, and B.C. Toth - - :
6 fa:
5 AD
Science 347 (6229), 1452-1455 2 ——
s 4f
<
o AN
2 -
281 Citations - :
0 e

() prediction

How does QCD generate this? The role of quarks and of gluons?
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