

Measurements of Higgs boson properties with the ATLAS detector

8th International Conference on High Energy Physics in the LHC Era

Valparaíso, january 2023

José Ocariz, LPNHE-Paris & Université Paris Cité on behalf of the ATLAS collaboration

Overview

Studying the properties of the Higgs boson is a key component of the LHC physics program

Observation of deviations between these measurements and Standard Model (SM) predictions would be a sign of possible new phenomena beyond the SM

Recent public ATLAS results to be discussed in this talk:

Measurement of the Higgs boson mass in the $H \rightarrow ZZ^* \rightarrow 4\ell$ decay channel (and $H \rightarrow \gamma\gamma$)

arXiv:2207.00320 Phys. Lett. B 784 (2018) 345

Constraints on the total width of the Higgs boson in the $ZZ \rightarrow 4\ell$ and $ZZ \rightarrow 2\ell 2\nu$ channels

ATLAS-CONF-2022-068

CP properties of the Higgs boson coupling to electroweak bosons with the VBF $H \rightarrow \gamma\gamma$ channel

arXiv:2208.02338

- CP properties of the Higgs boson coupling to fermions
 - tau-Higgs interaction with $H \rightarrow \tau^+ \tau^-$

arXiv:2212.05833

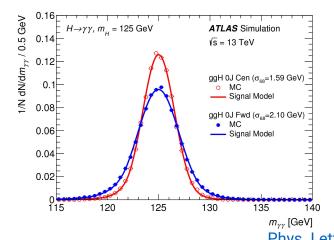
top-Higgs Yukawa coupling in tH and ttH events with H \rightarrow bb and with H $\rightarrow \gamma \gamma$ ATLAS-CONF-2022-016 Phys. Rev. Lett. 125 (2020) 061802

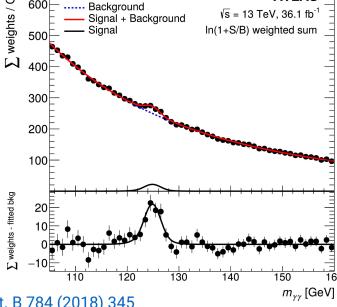
Higgs mass (I)

- intimately related to the Higgs potential
 - → its value is not predicted by the SM
 (only mild correlations with heavy fermion and boson masses)

$$V(\Phi) = -\mu^2 \Phi^* \Phi + \lambda (\Phi^* \Phi)^2$$

the Higgs couplings are defined by the m_H value


$$=V_0 + \frac{1}{2}m_H^2H^2 + \lambda \langle v \rangle H^3 + \frac{1}{4}\lambda H^4$$


- access to the fundamental μ^2 parameter:
 - → at the center of the naturalness problem
- precision measurements via fully-reconstructed final states in $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^* \rightarrow 4\ell$
- understanding of detector is crucial:
- \rightarrow precise calibrations of γ , μ^{\pm} and e^{\pm} energy and momentum scales are needed
- \rightarrow also, precise understanding of detector resolution

Mass measurement with $H \rightarrow \gamma \gamma$:

$$m_H = 124.93 \pm 0.21 \text{ (stat.)} \pm 0.34 \text{ (syst.)} \text{ GeV}$$

(36.1 fb⁻¹, subset of Run 2 data)

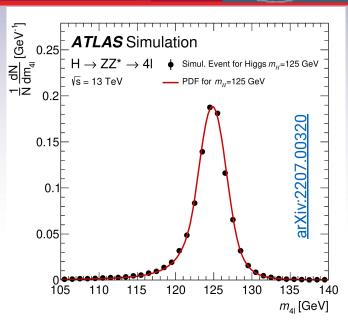
Systematics dominated by knowledge of EM calorimeter and material

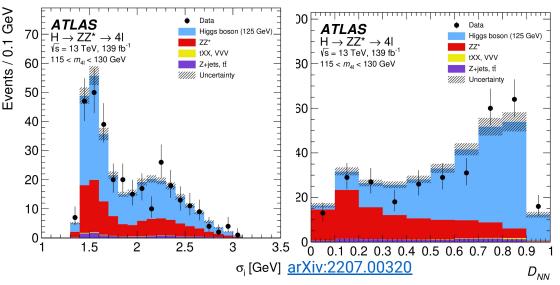
Higgs mass (II)

Mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel:

Categorise events per Z boson decay channel: 4µ, 2µ2e, 2e2µ, 4e Recover final state radiation, kinematic constraint of leading lepton pairs Simultaneous fit in 4 the final state categories (4µ, 4e, 2µ2e, 2e2µ)

Discriminant variables:

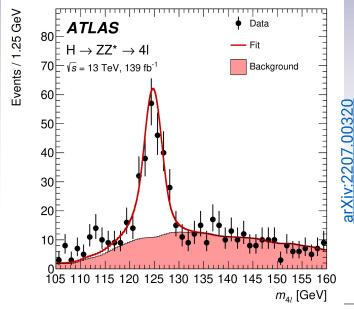

- $m_{4\ell}$, the four-lepton invariant mass D_{NN} , a signal-to-background discriminant input: $4\ell p_{T} \& \eta$, trained separately for each final state
- σ, the per-event resolution

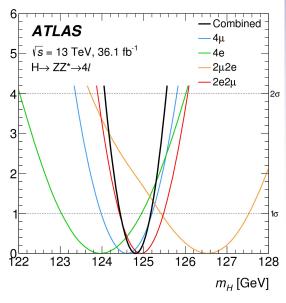

PDF for signal:

$$\begin{split} \mathcal{P}(m_{4\ell}, D_{NN}, \sigma_i | m_H) &= \mathcal{P}(m_{4\ell} | D_{NN}, \sigma_i, m_H) \cdot \mathcal{P}(D_{NN} | \sigma_i, m_H) \cdot \mathcal{P}(\sigma_i | m_H) \\ &\simeq \mathcal{P}(m_{4\ell} | D_{NN}, \sigma_i, m_H) \cdot \mathcal{P}(D_{NN} | m_H), \end{split}$$

Dependence of D $_{NN}$ and σ_{i} on m_{H} : \rightarrow interpolated from fits to samples generated at various m_{H}

PDF for background: $P_b = P_b(m_{4\ell}, D_{NN})$ \rightarrow 2D probability density function using kernel estimation

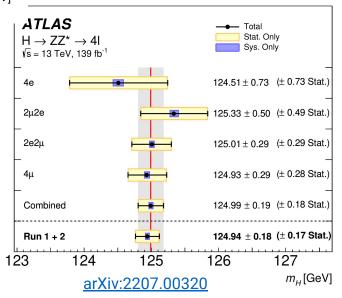

Higgs mass (III)



Mass measurement in the $H \rightarrow ZZ^* \rightarrow 4\ell$ channel: (139 fb⁻¹, full Run 2 data)

$$m_H = 124.99 \pm 0.18 \text{ (stat.)} \pm 0.04 \text{ (syst.)} \text{ GeV}$$

Systematic Uncertainty	Contribution [MeV]
Muon momentum scale	±28
Electron energy scale	±19
Signal-process theory	±14


Most precise ATLAS measurement of m_H : total uncertainty slightly below 1.5 per mille

Significantly improved muon p_{T} -scale uncertainty wrt previous published result

Result dominated by channels with sub-leading dimuons (4 μ and 2e2 μ)

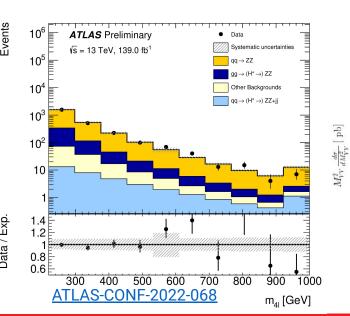
Combining this measurement with the Run 1 ATLAS result gives :

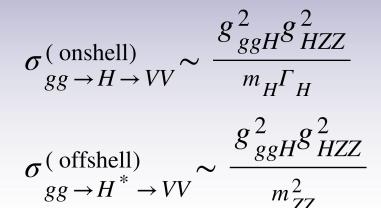
$$m_H = 124.94 \pm 0.17 \text{ (stat.)} \pm 0.03 \text{ (syst.)} \text{ GeV}$$

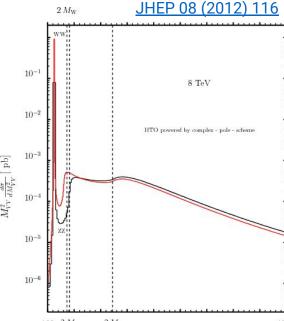
·2 In(A)

Higgs Width (I)

SM prediction:


$$\Gamma_{\rm H}^{\rm SM}$$
=4.1 MeV

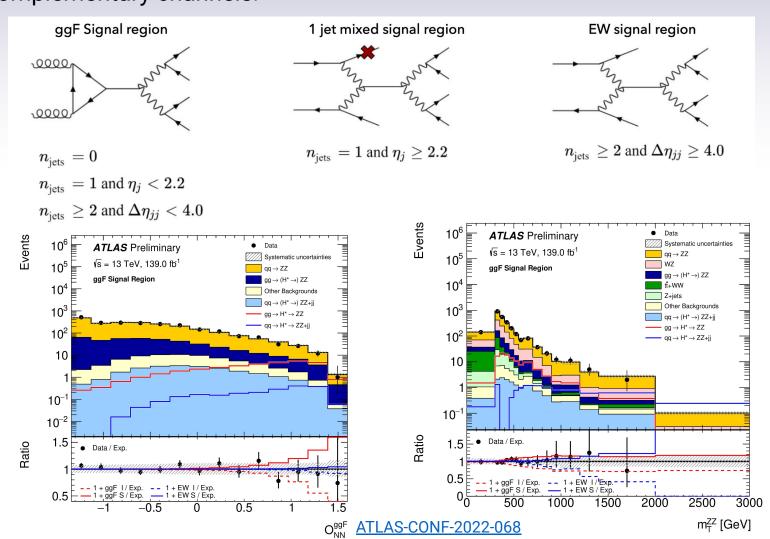

- → makes it sensitive to non-SM contributions to the total width
- → too small for detector resolution of the LHC experiments
- access via the ratio of on-shell and off-shell Higgs production to extract Γ_H \to exploits enhanced off-shell production, unique to H \to VV


 - → assumes no significant contributions from new physics below ~2 TeV
- the off-shell Higgs signal and $gg \rightarrow ZZ$ background cannot be distinguished
 - → large, destructive interference effects

(a similar interference effect at play in EW production)

 M_{VV} [GeV]

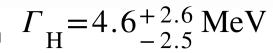
N. Kauer and G. Passarino,

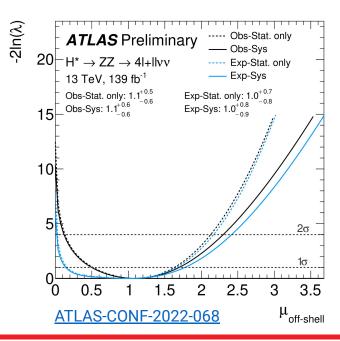


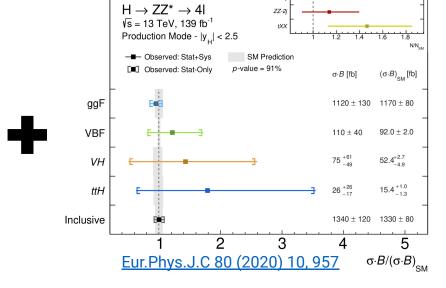
Higgs Width (II)

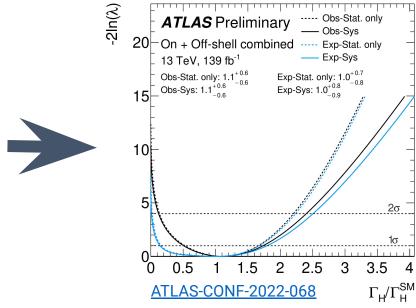
- three signal regions in the analysis, targeting both ggF- and VBF- enriched selections
- the measurement is performed in two complementary channels:

- ZZ*→4ℓ advantages:
 - ▶ clean signal
 - ► fully reconstructed observable:
 - ullet neural net discriminant $O_{
 m NN}^{
 m ggF}$
- ZZ*→2ℓ2v advantage:
 - ► six times higher branching ratio observable:
 - ► transverse ZZ mass $m_{\rm T}^{\rm ZZ}$


Higgs Width (III)


- Off-shell signal strength from a simultaneous fit to the six signal regions
- $\mu_{\text{(offshell)}} = 1.1^{+0.6}_{-0.6}$ observed signal strength:
 - \rightarrow background-only hypothesis rejected at 3.2 σ observed (2.4 σ expected)


ATLAS


- combination with the 4\emptyset on-shell signal strength to find the Higgs boson total width:
- i.e. in terms of the Higgs boson width $\Gamma_{\rm H} = 4.6^{+2.6}_{-2.5} \,{\rm MeV}$

Results are preliminary (asymptotic confidence bands) but not expected to change significantly

Higgs spin and CP

- SM Higgs has spin 0 and positive (even) parity (J^{CP} = 0⁺⁺)
- legacy Run 1 result : spin 1 and 2 hypotheses excluded at > 99.9% CL using $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ^*$, and $H \rightarrow WW^*$
- known sources of CP violation in the SM: complex phases in CKM quark and PMNS neutrino mixing matrices
 - → SM CPV by itself insufficient to generate the observed matter-antimatter asymmetry in the Universe
 - → clear motivation to study the CP properties on the Higgs boson
- strategy: measure shape (and rate) effects on CP-sensitive observables
 - → specific studies for bosonic or fermionic couplings
- effect of CP-odd components on bosonic couplings:
 - → parametrized as expansion with higher order terms
 - \rightarrow suppressed by powers of scale of new physics Λ
- fermionic couplings are affected at tree level:

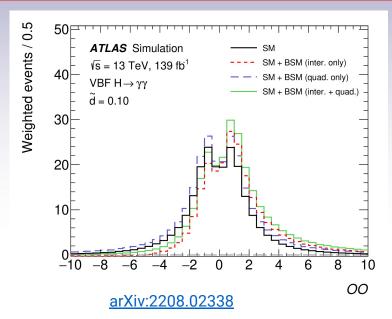
$$\mathcal{L}_{\text{VVH}} = \mathcal{L}_{\text{VVH, SM}} + \frac{1}{\Lambda^2} cH \tilde{V}_{\mu\nu} V_{\mu\nu}$$

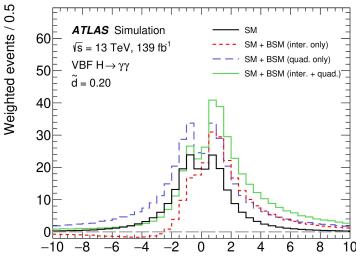
$$\mathcal{L}_{Y,f} = -\frac{m_f}{\langle v \rangle} \overline{\psi}_f \left(\kappa_f + i \gamma_5 \kappa_f^{\sim} \right) H \psi_f$$

- → measure mixing angle between CP-even and CP-odd components
- → study the Higgs interactions with heavier fermions to benefit from their enhanced coupling

Higgs HVV coupling in VBF (I)

- study of bosonic couplings using VBF $H \rightarrow \gamma \gamma$
- effective HVV Lagrangian augmented with dimension six CP-odd operators
- strength of CP violation in VBF matrix element via a single parameter:

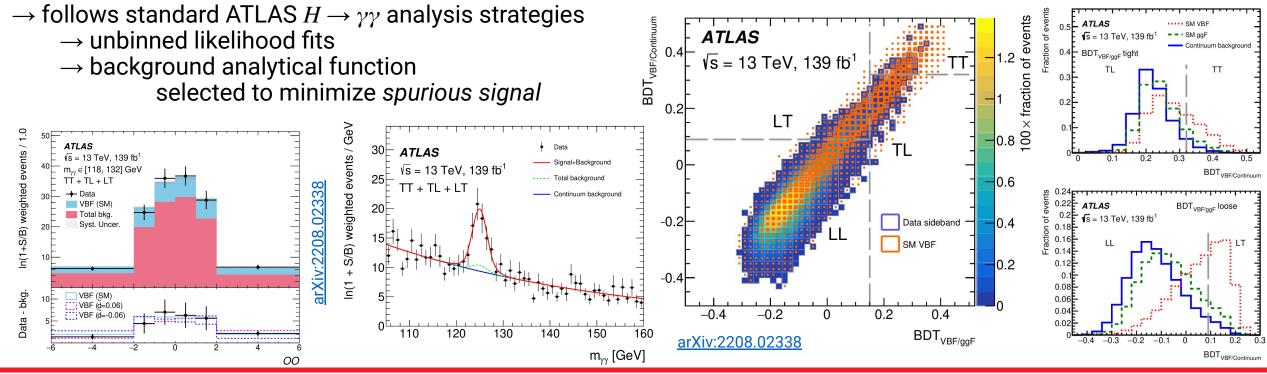

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\tilde{d}\Re\left(\mathcal{M}_{SM}^*\mathcal{M}_{CP-\text{odd}}\right) + \tilde{d}^2|\mathcal{M}_{CP-\text{odd}}|^2$$


(more precisely: \widetilde{d} parameter for HISZ basis, $c_{H\widetilde{W}}$ for SMEFT Warsaw basis)

- calculate LO matrix elements using 4-momenta of Higgs and VBF jets
- derive initial-state parton momentum fractions from jet momenta
- use the Optimal Observable OO:

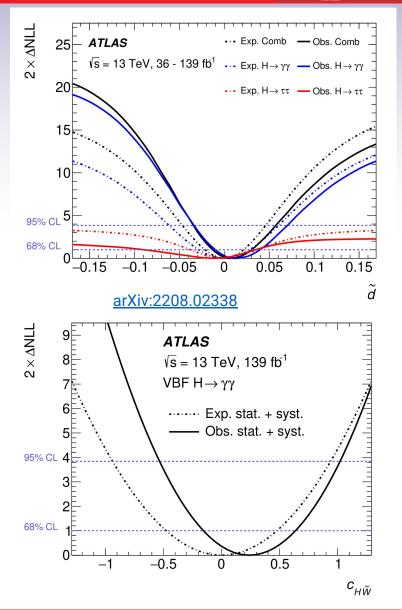
$$OO = \frac{2\Re e \left(\mathcal{M}_{SM}^* \mathcal{M}_{CP-\text{ odd}} \right)}{|\mathcal{M}_{SM}|^2}$$

- → no-CP violation scenario : 00 symmetric
- → increasingly CP strength: larger OO asymmetry and non-zero mean value



Higgs HVV coupling in VBF (II)

- select events with ≥2 photons and ≥2 tag jets, maximise signal purity using 2 BDTs:
 - → BDT(VBF/ggF): separate VBF signal from gluon-fusion Higgs production
 - → BDT(VBF/Continuum): separate VBF signal from continuum diphoton background
- split into signal regions using BDT output: Tight-Tight (TT); Loose-Tight (LT); Tight-Loose (TL)
- pure shape analysis signal normalisation is left floating in the fit to depend only on interference term


Higgs HVV coupling in VBF (III)

- baseline interpretation of the result using the HISZ EFT operator basis (further tightened through combination with results from the $H \rightarrow \tau\tau$ channel)
- results using the Warsaw basis also extracted (for future combinations)
- sensitivity essentially driven by the interference term
 - no change in results from the quadratic term
- results are the strongest existing bounds on CP violation in HVV

Table 1: Observed and expected 68% and 95% confidence intervals for \tilde{d} and $c_{H\tilde{W}}$. Results for scenarios with the interference-only (noted as 'inter. only') term and interference-plus-quadratic terms (noted as 'inter.+quad.') are both presented. Combined results for \tilde{d} including the $H \to \tau \tau$ analysis are shown. The expected results of $H \to \tau \tau$ are slightly different from Ref. due to the different correlation scheme between their signal region and control region.

	68% (exp.)	95% (exp.)	68% (obs.)	95% (obs.)
\tilde{d} (inter. only)	[-0.027, 0.027]	[-0.055, 0.055]	[-0.011, 0.036]	[-0.032, 0.059]
\tilde{d} (inter.+quad.)	[-0.028, 0.028]	[-0.061, 0.060]	[-0.010, 0.040]	[-0.034, 0.071]
\tilde{d} from $H \to \tau \tau$	[-0.038, 0.036]	_	[-0.090, 0.035]	-
Combined \tilde{d}	[-0.022, 0.021]	[-0.046, 0.045]	[-0.012, 0.030]	[-0.034, 0.057]
$c_{H\tilde{W}}$ (inter. only)	[-0.48, 0.48]	[-0.94, 0.94]	[-0.16, 0.64]	[-0.53, 1.02]
$c_{H\tilde{W}}$ (inter.+quad.)	[-0.48, 0.48]	[-0.95, 0.95]	[-0.15, 0.67]	[-0.55, 1.07]

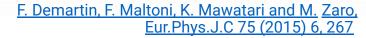
Higgs Yukawa couplings

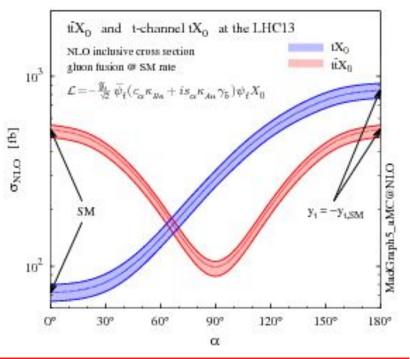
ullet Higgs Yukawa couplings generically decomposed into CP-even (κ_f) and CP-odd ($\widetilde{\kappa}_f$) contributions:

$$\mathcal{L}_{Y,f} = -\frac{m_f}{\langle v \rangle} \overline{\psi}_f \left(\kappa_f + i \gamma_5 \widetilde{\kappa}_f \right) H \psi_f$$

• fraction of CP violation in these Yukawa interactions parameterised by a CP mixing angle α

$$f \stackrel{Hff}{\text{CP}} = \frac{\left| \stackrel{\sim}{\kappa_f} \right|^2}{\left| \kappa_f \right|^2 + \left| \stackrel{\sim}{\kappa_f} \right|^2} = \sin^2 \alpha$$


• CP violation in Yukawa interactions probed via top quarks and tau leptons

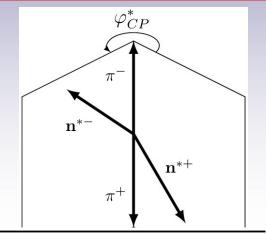

$$\rightarrow H \rightarrow \tau^+ \tau^-$$
:

sensitivity to the CP mixing angle α probed through angular/spin correlations

→ Higgs-top:

access via ttH and tH production using both rates and CP-sensitive observables

Higgs CP with H→T⁺T⁻ (I)



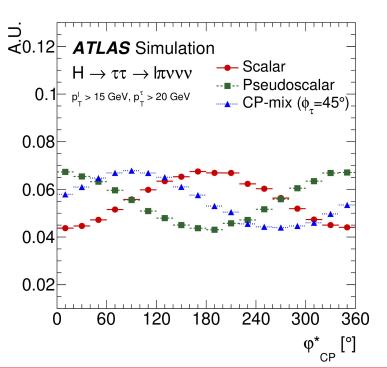
Sensitivity to CPV from measurement of angle between τ lepton decay planes: ϕ_{CP} \to using ϕ^* as proxy (due to neutrinos)

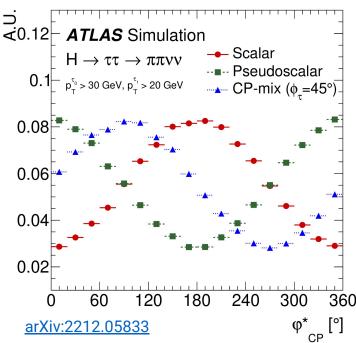
Measurement performed in 24 signal categories and 10 control regions

→ targeting different decay modes

Decay plane reconstruction using either IP or " ρ plane" methods (decays with/without π^0)

6.9%


1.3%


6.0%

6.7%

2.5% 5.6%

5.1%

Notation	n Decay mo	de	Branching fraction	
ℓ	$\ell^{\pm}ar{ u} u$		35.2%	
1p 0 n	$h^{\pm}\nu \ (\pi^{\pm})$		$11.5\% \ (10.8\%)$	
1p 1 n	$h^{\pm}\pi^{0}\nu \ (\pi^{\pm}\sigma)$		25.9%~(25.5%)	
1pXn	$h^{\pm} \geq 2\pi^0 \nu \ (\pi^2)$		10.8% (9.3%)	
3p0n	$3h^{\pm}\nu \ (3\pi^{\pm})$	$=\nu$)	9.8% (9.0%)	
ecay channel	Decay mode combination	Method	Fraction in all τ -lepton-pair decays	
	$\ell ext{-}1 ext{p}0 ext{n}$	IP	8.1%	
$\tau_{ m lep} au_{ m had}$	$\ell ext{-1p1n}$	$_{-}^{\mathrm{IP-} ho}$	18.3%	
	$\ell ext{-}1 ext{pXn}$	$_{\mathrm{IP}- ho}$	7.6%	

 $IP-a_1$

IP

 $IP-\rho$

 $IP-\rho$

 ℓ -3p0n

1p0n-1p0n

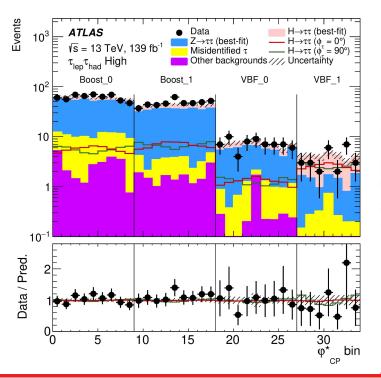
1p0n-1p1n

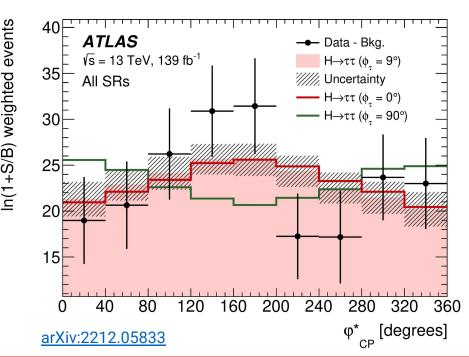
1p1n-1p1n

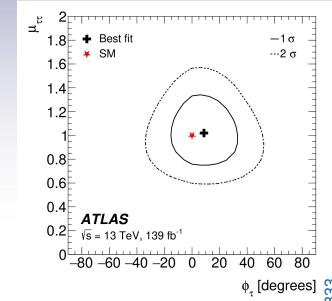
1p0n-1pXn

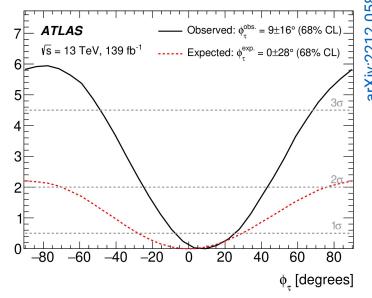
1p1n-1pXn

1p1n-3p0n


 $\tau_{\rm had} \tau_{\rm had}$

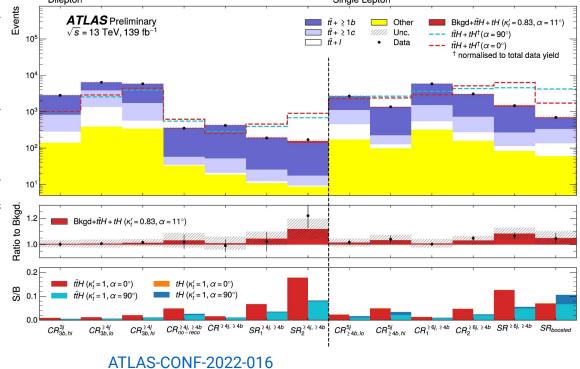



Higgs CP with H→T⁺T⁻ (II)



- CP mixing angle extracted from a simultaneous fit to all regions
 - → exploits shape only information : signal strength floated
- dominant background ($Z \rightarrow \tau^+\tau^-$) from dedicated control regions
- results statistically limited
 - → leading systematic uncertainty from jet calibration
- best fit value for $\phi_{\tau} = 9 \pm 16$ degrees at 1σ (compatible with SM)
 - \rightarrow pure CP-odd hypothesis (ϕ_{τ} = 90 degrees) excluded at 3.4 σ

CP measurements in ttH/tH (H→bb) (I)

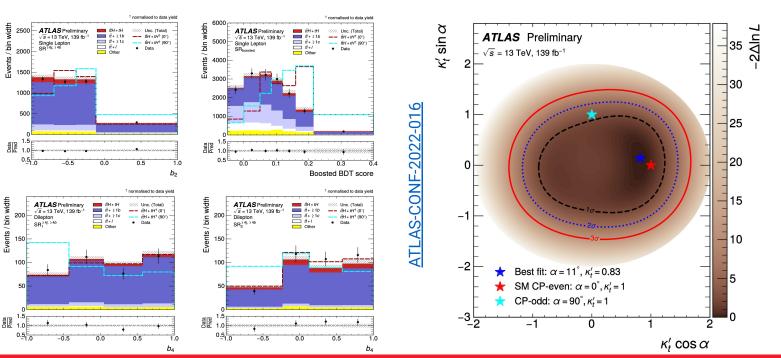

- explore CP violation in Higgs-top coupling CP using ttH and tH production
 - → tWH and tHjb considered as signal
- analysis strategy: event categorisation:
 - → step I: control (CR) and preliminary signal regions (PSR) defined
 - → step II: classification BDT (ttH vs tt+jets) used to define final SR (ttH-enrich region) from PSRs
- CP sensitive observables used in PSRs
 - → exploit angular and kinematic differences in events caused by CP effects

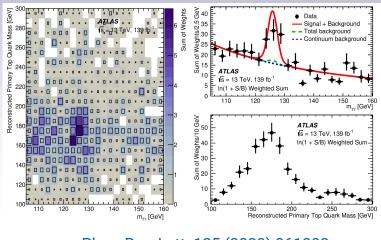
Channel (PSR)	Final SRs and CRs	Classification BDT selection	Fitted observable
	$CR_{\text{no-reco}}^{\geq 4j, \geq 4b}$	_	$\Delta\eta_{\ell\ell}$
Dilepton (PSR $^{\geq 4j, \geq 4b}$)	$CR^{\geq 4j, \geq 4b}$	$BDT \in [-1, -0.086)$	b_4
	$SR_1^{\geq 4j, \geq 4b}$	BDT∈ [-0.086, 0.186)	b_4
	$CR^{\geq 4j, \geq 4b}$ $SR_{1}^{\geq 4j, \geq 4b}$ $SR_{2}^{\geq 4j, \geq 4b}$	BDT∈ [0.186, 1]	b_4
ℓ + jets (PSR $^{\geq 6j, \geq 4b}$)	$\begin{array}{c c} \operatorname{CR}_{1}^{\geq 6j, \geq 4b} \\ \operatorname{CR}_{2}^{\geq 6j, \geq 4b} \\ \operatorname{SR}^{\geq 6j, \geq 4b} \end{array}$	BDT∈ [-1, -0.128)	b_2
	$\operatorname{CR}_{2}^{\geq 6j, \geq 4b}$	BDT∈ [-0.128, 0.249)	b_2
	$SR^{\frac{2}{5}6j, \geq 4b}$	BDT∈ [0.249, 1]	b_2
ℓ + jets (PSR _{boosted})	SR _{boosted}	BDT∈ [-0.05, 1]	Classification BDT score

sensitivity to α and κ , from CP- sensitive observables:

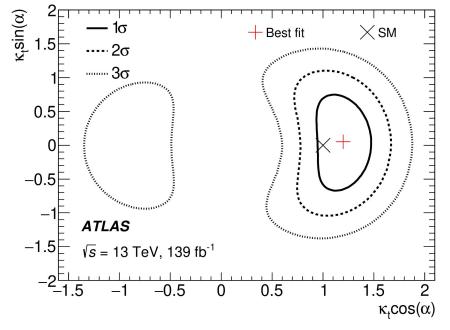
$$b_2 = \frac{(\vec{p}_1 \times \hat{n}) \cdot (\vec{p}_2 \times \hat{n})}{|\vec{p}_1||\vec{p}_2|}, \text{ and } b_4 = \frac{p_1^z p_2^z}{|\vec{p}_1||\vec{p}_2|}$$

(and a BDT for the $SR_{boosted}$ region)





CP measurements in ttH/tH (H→bb) (II)



- CP mixing angle α and coupling strength extracted from a profile likelihood fit \rightarrow uncertainty on the mixing angle dominated by $t\bar{t}+\geq 1b$ modelling
- CP-even scenario : $\alpha = \left(11 + \frac{56}{-77}\right)^{\circ}, \kappa'_{t} = \left(0.83 + \frac{0.30}{-0.46}\right)^{\circ}$
 - \rightarrow pure CP-odd scenario disfavoured at 1.2 σ
- this result is complementary and compatible to previous $t\bar{t}H(H\to\gamma\gamma)$ analysis \to allows for a future combined result

Phys. Rev. Lett. 125 (2020) 061802

Conclusions

On the Higgs boson mass:

- important effort to calibrate leptons in Run 2 \rightarrow impressive reduction of systematic uncertainties in H \rightarrow ZZ* \rightarrow 4 ℓ
- the statistical uncertainty remains dominant (as in Run 1)
- will further improve with combination with $H \rightarrow \gamma \gamma$ using full Run 2 dataset
 - ongoing effort towards the final Run 2 photon calibration
- improvements in calibration remain motivated by needs in other physics studies
 - i.e. search for new, narrow resonances

On the Higgs boson width:

- room for improvements in the systematic uncertainties (i.e. on background)
- off-shell yields are still limited by statistics
- still room for new physics contributions to the total Higgs width Γ

Search for CP violation in the Higgs sector is very active

- analyses are probing anomalous contributions in fermionic and boson couplings
- measurements in several decay channels accessing CPV effects both in production and decay
- all current limits are compatible with SM predictions
- some CP-odd couplings are excluded at $\geq 3\sigma$ (by combinations of multiple measurements)
- as a general rule, constraints are statistically limited

Stay tuned for more Run-2 measurements and combination and for Run-3!