Transverse Momentum Broadening in Nuclear Media at Jefferson Lab's CLAS

Esteban Molina C.

Semi-Inclusive Deep Inelastic Scattering (SIDIS)

$$e(l)+N(p_N) \rightarrow e'(l')+h(p_h)+X(p_X)$$

Kinematical variables:

$$Q^{2} = (l - l')^{2}$$

$$\nu = (E - E')$$

$$z_{h} = \frac{p_{N} \cdot p_{h}}{p_{N} \cdot q} = \frac{E_{h}}{\nu}$$

$$P_{T}^{2} = P_{h}^{2} - P_{||}^{2}$$

$$\phi_{h} = \text{angle(leptonic plane, hadronic plane)}$$

Additionally, we used:

$$x_f = \left(\frac{\mathbf{P}_{||}}{\mathbf{P}_{||_{max}}}\right)_{CM}$$

$$A^{1/3} = (\text{Mass Number})^{1/3}$$

Semi-Inclusive Deep Inelastic Scattering (SIDIS)

$$e(l)+N(p_N) \rightarrow e'(l')+h(p_h)+X(p_X)$$

Kinematical variables:

$$Q^{2} = (l - l')^{2}$$

$$\nu = (E - E')$$

$$z_{h} = \frac{p_{N} \cdot p_{h}}{p_{N} \cdot q} = \frac{E_{h}}{\nu}$$

$$P_{T}^{2} = P_{h}^{2} - P_{||}^{2}$$

$$\phi_{h} = \text{angle(leptonic plane, hadronic plane)}$$

Additionally, we used:

$$x_f = \left(\frac{\mathbf{P}_{||}}{\mathbf{P}_{||_{max}}}\right)_{CM} \quad \Longrightarrow \quad$$

Positive values to select current fragmentation region events.

$$A^{1/3} = (\text{Mass Number})^{1/3}$$

Diagram of hadronization in nuclear medium [1].

^[1] Guiot, B.; Kopeliovich, B. (2020). Spacetime Development of in-medium hadronization: Scenario for Leading Hadrons.

^[2] Baier, B.; Dokshitzer, Y.; Mueller, A.; Peigné, S.; Schiff, D. (1997). Radiative energy loss and pt-broadening of high energy partons in nuclei.

Broadening shows **where** the deconfined quark transitioned into a forming hadron!

$$\Delta P_T^2(A) = \text{Constant}$$

CLAS and The Eg2 Run Period

CLAS detector.

Double-target system [3].

9

Corrections Applied to Data: Acceptance Correction

Acceptance correction is used to account for detector inefficiencies. Is defined as:

$$\mathrm{Acc}(Q^2,\nu,z_h,P_T^2,\phi_h) = \frac{N_{\mathrm{rec}}(Q^2,\nu,z_h,P_T^2,\phi_h)}{N_{\mathrm{thr}}(Q^2,\nu,z_h,P_T^2,\phi_h)} \xrightarrow{\hspace*{1cm}} \text{Geant3}$$

No xf cut applied. xf>0 cut applied.

Corrections Applied to Data: Radiative Correction

Radiative correction accounts for events with real photon emission, among others:

Non-radiative SIDIS event

Radiative SIDIS events

11

Corrections Applied to Data: Radiative Correction

Radiative correction accounts for events with real photon emission:

No xf cut applied. xf>0 cut applied.

xf>0 cut applied.

xf>0 cut applied.

Legend:

- Carbon
- Iron
- Lead

- Strong correlation with zh.
- Weak correlation with nu and Q².

Broadening Results xf>0

Legend:

- Carbon
- Iron
- Lead

- Strong correlation with zh.
- Weak correlation with nu and Q².

Legend:

- $0.4 < z_h < 0.5$
- \bullet 0.5 < z_h < 0.6
- \bullet 0.6 < z_h < 0.8
- $0.8 < z_h < 1$

- Strong correlation with zh.
- Weak correlation with nu and Q².
- Linear or curve behavior w.r.t. A¹/³.

Broadening Results xf>0

Legend:

- \bullet 0.4 < z_h < 0.5
- \bullet 0.5 < z_h < 0.6
- \bullet 0.6 < z_h < 0.8
- \bullet 0.8 < z_h < 1

- Strong correlation with zh.
- Weak correlation with nu and Q².
- Mostly linear behavior w.r.t. A¹/³.

Summary

- The preliminary positive pions broadening results for CLAS detector were presented in this talk.
- Acceptance correction had the biggest impact on the data.
- There is a noticeable correlation of the broadening with respect to zh and A¹/³.
- The broadening presents a behavior not observed in previous experimental results.

Last but not least...

Acknowledgements!

Dr. Hayk Hakobyan

Dr. William Brooks

Dr. Benjamin Guiot

Dr. Taisiya Mineeva

Thank you!

Backup Slides

HERMES Broadening

Kinematic Coverage

Fragmentation Regions

