

CMS as a heavy-ion detector

Distinguishing features

- High rate capabilities
- Precise tracking in 4T B field
- Large acceptance
- Excellent muon identification

Upsilon family

Dissociation of quarkonia states probes the quark-gluon plasma temperature

CERN courier article

1st observation of the elusive Y(3s) in AA!

Upsilon model comparisons

CMS-PAS-HIN-21-007

$$Y(2s) / Y(3s) R_{AA} \approx 2$$

Strong model discrimination from double ratio

Upsilon in pA

PLB (2022) 137397

"Sequential suppression" is also observed in pPb Suggests that final state effects are already important in pA (initial state effects would affect all 3 states equally)

Charm elliptic flow in AA

PRL 129 (2022) 022001

- Prompt D₀ v₂ measured with 2 and 4 particle cumulants
- Similar v2{4} / v2{2} to charged particles, pointing to similar origin (event-by-event fluctuations)

Heavy flavor azimuthal anisotropy

arXiv:2212.01636

Prompt / nonprompt D⁰ separated based on DCA

- Charm v₂ & v₃ show characteristics of flow + energy loss
- Bottom more resistant to collective effects, but still shows influence of path-length dependent energy loss

Azimuthal anisotropy of quarkonia

No sign of v_2 for $\Upsilon(1s)$ in high multiplicity pPb or PbPb Significantly smaller than $J/\psi \ v_2$ in high multiplicity pPb

CMS-PAS-HIN-21-001

Heavy flavor v₂ hierarchy

Hierarchy of heavy flavor azimuthal asymmetry starting to become clear Should be further clarified with Run 3 data

Dijet azimuthal anisotropy

arXiv:2210.08325

Strong v_2 arises from path-length dependence of jet quenching Higher order v_n consistent w/ zero \rightarrow fluctuations don't play a role

Elliptic flow higher moments

Idealized vs. Fluctuations

- Elliptic flow is sensitive to event-by-event fluctuations of the initial nucleon positions
- For Gaussian fluctuations: v₂{n}
 independent of # of final state particles used
 to measure it (n), where n > 2
- Fine splitting of v₂ therefore maps out non-Gaussian fluctuations of the initial state
- Measured up to 5th central moment (n = 10)

CMS-PAS-HIN-21-010

Ultra-peripheral collisions

 $\gamma\gamma \rightarrow \tau\tau$ event display

 $\sigma \propto Z^4$, where Z(Pb) = 82

Observation of $\gamma\gamma \rightarrow \tau\tau$

"Using light to make cousins of the electron"

CMS briefing

Anomalous magnetic moment a_τ sensitive to BSM

Observation by CMS: 77 ± 12 events

 \rightarrow a_r consistent w/ zero

Projected to be competitive w/ LEP in LHC Phase 2

arXiv:2206.05192 (accepted by PRL)

J/ψ from $\gamma + A$

CMS-PAS-HIN-22-002

Interested in coherent component: $\gamma + A \rightarrow J/\psi + A$

Extracted via template fit

Determining the photon kinematics

J/ ψ x-section samples mix of low and high E γ-A c.o.m. contributions

Novel approach: Control UPC impact parameter by separating contributions from based on forward neutron multiplicity

Coherent J/ψ x-section vs COM energy

Control of kinematics allows the 1st measurement to large energy / small Bjorken x

Rapid rise of J/ψ x-section, which "saturates" at high γ-A c.o.m. energy / low x Could be an indication of gluon saturation and/or approach to black disk limit 1st NLO calculation show a large contribution from quark-initiated processes → important for physics interpretation

Eskola et al, arxiv:2203.11613

CMS Upgrades

Phase 2 upgrades will prepare CMS for occupancies in pp that approach heavy ions

Capabilities for heavy ions will improve across the board CERN-LHCC-2019-003 CMS-DP-2021-037

MIP Timing Detector will bring time-of-flight based PID to CMS

Charm hadronization studies down to $p_T \approx 0$

Conclusions

- CMS has plenty of recent heavy-ion results on
 - Quarkonia dissociation
 - Open heavy flavor
 - Flow fluctuations
 - Jet quenching
 - Ultraperipheral collisions

CMS heavy ion results

Although this year's run was postponed, still looking forward to many new & interesting results with the large Run 3 dataset & beyond!