Results from muon reconstruction performance with ATLAS at Run-3

Will Leight, for the ATLAS Collaboration HEP2023, Valparaiso, Chile

Outline

- ATLAS Muon Spectrometer in Run-3
- Muon Reconstruction in ATLAS
- Muon Calibration
- Measuring Muon Momentum Scale and Resolution in Run-3 Data

ATLAS in Run-3

- Data-taking in Run-3 has been proceeding smoothly
- The 2022 dataset is important for adjusting our reconstruction and calibrations for Run-3 conditions

ATLAS Muon Spectrometer

ATLAS Muon Spectrometer

- Drift tube chambers (MDT) provide precision measurements in the barrel and the endcap
- Resistive plate chambers (RPC) provide triggering in the barrel

MS Upgrades

New for Run-3: upgrade of the BIS 7 and 8 chambers to include RPCs for triggering and small-tube MDTs for better high-rate performance

- Drift tube chambers (MDT) provide precision measurements in the barrel and the endcap
- Resistive plate chambers (RPC) provide triggering in the barrel

 Thin-gap chambers (TGC) provide triggering in the endcap

New for Run-3: upgrade of the Small Wheels to handle higher luminosities with better spatial resolution and improved triggering

New Small Wheel

- MM Chambers

 wedges

 sTGC

 xTGC

 xTGC

 xTGC

 xTGC

 xTGC

 xTGC

 xTGC
 - MicroMega detectors
 - Eight total planes in each sector
 - High-precision detectors that can handle higher rates than MDTs
 - Expect <100 μm precision per plane

- sTGC detectors provide triggering
 - 4 planes on each side of a sector
 - Similar to old TGCs but smaller strips can handle higher rates
 - 1 mrad resolution for the reconstructed segment angle in the trigger

New for Run-3: upgrade of the Small Wheels to handle higher luminosities with better spatial resolution and improved triggering

BIS7/8

New for Run-3: upgrade of the BIS 7 and 8 chambers to include RPCs for triggering and small-tube MDTs for better high-rate performance • Covers half of the 1.0< $|\eta|$ <1.3 region (the small sectors

 Covers half of the 1.0<|η|<1.3 region (the small sectors only)

- This region has similar particle fluxes to that covered by the NSW
- Provides trigger coverage with RPC triplets
 - New RPC version reduces time resolution from 1 ns to 0.4 ns
 - Also improved spatial resolution
- To make space for RPCs, switch to smaller MDTs
 - Half the radius of currently used MDTs, will improve performance at higher luminosity
- Also serves as a pilot project for the Phase II upgrade of the MS barrel
 - The first barrel layer will be replaced by a similar sMDT+RPC layout

Muon Reconstruction

MS SegmentsID tracks

- Segments are reconstructed in each layer of the MS
 - Including trigger hits for information about the phi plane

Muon Reconstruction

- MS Segments
- ···· ID tracks
- MS Tracks

- Minimum of two segments required
- Additional hits can be added during the fit

- MS Tracks are reconstructed from the segments
 - Including a beam-spot constraint and energy loss from the calorimeters

Muon Reconstruction

- MS Segments
- ··· ID tracks
- MS Tracks
- Combined Tracks

- Muons can be reconstructed without a combined track
- Trades efficiency for purity, not considered in this talk

- Combined tracks are built from MS tracks and ID tracks
 - A complementary inside-out algorithm matches ID tracks and segments

Run-3 Muon Reconstruction Efficiency

- Efficiency is for reconstructing muons that pass the Medium quality criteria
 - Mainly having to do with the number of hits in precise detectors
 - At least two layers with precision hits required
 - For now, the NSW is not counted as such in data, leading to loss of efficiency wrt MC

Correcting for Charge-Dependent Effects

- Residual misalignment can induce charge-dependent effects on momentum measurement
 - So-called weak modes in the ID may not be corrected by global minimization of χ² residuals
 - Residual uncertainty in the MS alignment can be up to 120-130 µm
- Correction is obtained by minimizing the variance of m_{µµ} for Z bosons

Momentum Calibration

$$p_{\mathrm{T}}^{\mathrm{Cor,Det}} = \frac{p_{\mathrm{T}}^{\mathrm{MC,Det}} + \sum_{n=0}^{1} s_{n}^{\mathrm{Det}}(\eta, \phi) \left(p_{\mathrm{T}}^{\mathrm{MC,Det}}\right)^{n}}{1 + \sum_{m=0}^{2} \Delta r_{m}^{\mathrm{Det}}(\eta, \phi) \left(p_{\mathrm{T}}^{\mathrm{MC,Det}}\right)^{m-1} g_{m}}$$

- Simulated muon momentum resolution is smeared (Δr terms) to match data
 - Accounts for energy loss fluctuations, multiple scattering, intrinsic detector resolution, etc.
- Simulated muon momentum scale is corrected (s terms) to match data
 - Accounts for potential errors in simulation of energy loss, magnetic field, etc.
- Δr and s values are obtained from fits to $m_{\mu\mu}$ distribution of Z and J/ Ψ events
 - Separately for large and small sectors, and in η bins
 - Z backgrounds are simulated, J/Ψ are taken from data

Muon Momentum Scale in Run-3

- Again, only Medium quality muons are considered
 - The NSW is again not considered as a precision station while it is being commissioned
- Calibration constants are derived from Run-3 data
 - Sagitta bias correction is not applied to data, not enough events to derive it yet
- Good data-MC agreement is observed

Muon Momentum Resolution in Run-3

 $<\!\!p_{\scriptscriptstyle \perp}\!\!>$ [GeV]

10

- Good data-MC agreement observed for resolution
- As well as in the overlap region between J/Ψ and Z
- Large uncertainty due to low stats

Summary

- ATLAS muon reconstruction is working well in Run-3
- Commissioning of the NSW is ongoing
- Preliminary momentum calibration derived
- Expect to reach Run-2 levels of performance with sufficient events
 - Scale uncertainty less than .05% (.1%) for Z (J/Ψ)
 - Resolution uncertainty less than 1.5% (2%) for Z (J/Ψ)

Backup

NSW Performance

- NSW detectors are taking data, commissioning is ongoing
 - Time alignment
 - Detector alignment
 - DAQ and software issues

Muon Calibration Uncertainties

- Systematic uncertainties include possible biases on the method and uncertainties in the background estimation
- The main uncertainty on the scale arises from performing the calibration using only Z or J/Ψ decays, instead of combining both
 - This accounts for extrapolation to p_T values away from the peak
- The main uncertainty on the resolution arises from varying the p_T ranges used in the fit
- Other sources of uncertainty include the choice of $m_{\mu\mu}$ range and binning, the kinematic reweighting applies to the simulated Z boson events, and the parameterization of the J/ Ψ background