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https://indico.cern.ch/event/1158681/

Why do we study J/yp production in heavy-ion collisions?

J/p mesons
are a hard probe: tests quark gluon plasma from creation to hadronization
no consistent microscopical theory available yet
which are not understood yet
show quite different results for key observables at RHIC and LHC:
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J/g production in p+p collisions

How to describe a composite object if perturbative QCD can only deal with
guarks and gluons

Need non perturbative input = assumptions.

Our approach: Wigner density formalism (as successful at lower energies)
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Wigner Density Formalism

Interaction depends on relative coordinates only, -> plane wave of CM
Starting point: Wave function (w.f.) of the relative motion of state i: |(I)1 =

w.f = density matrix D >< Py

Fourier transform of density matrix in relative coord. = Wigner density of |®: >
(close to classical phase space density)

; 0 1 1 R=1‘17Lr2\ r=ry —ra,
W (r,p) = [ dBPye®Y <r— —y|®; >< Dir + =y >. . 1_ :
9 ) pP_ _ P1—P2
: —p1+p2, P= :

2
ni(R,P) = /dB-r'dB’p @i’v(_r.p)n(g)(rl,pl,rz.pg)

n'?)(ry, p1,r2. p2) two body ¢ char density matrix
pp: In momentum space given by PYTHIA (Innsbruck tune)

. 2
In coordinate space ~ r?exp ( = %) 6% = (r*)/3 = 4/(3m32)
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Wigner Density Formalism

If there are N ¢ cbar pairs in the system the phase space density of states |®; >

drdp rd3p
2/ o e [T [ T

I'1 P1,r2,P2.....I'N. PN) (5)

Sum over all possible ccbar pairs after integration of the relative coordinates
Integration over all N-2 left particles.

3 3
p - Mn (R.P)
Multiplicity of |®; > (2m)?
dP, &R

Momentum distribution &P | (27)°




Wigner Density Formalism

The Wigner density of the state |?: > is different for S and P states
We choose the simplest possible parametrization

D 2 r=1.—1%
114 c ¢
2
16 D (2 3
o (rp) = o (S -5+ )
p (r.P) 3 didy \ 02 2 ! D : degeneracy of ®
72 ‘ d, : degeneracy of c
X exp [ - — - ngg] d, : degeneracy of cbar
o o ~ radius of ®

Where o reproduces the rms radius of the vacuum c cbar state |®; >

S =J/pAS),  x.(1P), P’ (29)




Wigner Density Formalism

The (Innsbruck) tuned PYTHIA reproduces FONLL calculations
but in addition it keeps the ccbar correlation (not known in FONLL)
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pp: comparison with Phenix data
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pp: comparison with ALICE data

same charmonia radii as at RHIC
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Important contribution of feeding

The observed J/y data in pp at RHIC and LHC can be well described by Wigner dens.
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AA collisions




AA: without any QGP

Without the formation of a QGP we expect a (large) enhancement of the
J/p production because ¢ and cbar from different vertices can form a J/y.
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but experiments show suppression
Reason: J/y production in HI collisions is a very complex process
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‘ Complexity of heavy quark physics in HI reactions

2) Evolution of the
QGP (transport
theory, Eo0S from
|4ttice gauge theory)

\

2) Interaction of
eavy quarks with
plasma constituents,
LPM, pQCD,
transport theory

4

3)Quarkonia formation
hadrons In QGP (finite temp

N

L

»

1) (hard) production of heavy’

quarks in initial NN collisions | __—1QcCD, pQCD)

(generalized parton distribution
fcts, pQCD, FONLL)




The different processes which influences the J/y yield

Creation of heavy quarks (shadowing)

J/yp are first unstable in the quark gluon plasma and are created later

c and cbar interact with the QGP

c and cbar interact among themselves (<-lattice QCD)

If QGP arrives at the dissociation temperature T, , Stable J/y are possible
J/p creation ends when the QGP hadronizes

J/p can be further suppressed or created by hadronic interaction
(task for the future -> Torres-Rincon)

There are in addition J/p from the corona (do not pass the QGP)
The model we developed follows the time evolution of all ¢ and cbar quarks
Is based, as our pp calculation, on the Wigner density formalism

assumes that
all c and cbar interact with the medium as those observed finally as D-mesons

all c and cbar interact among themselves
uses EPOS2 to describe the expanding QGP
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HQ interactions with the QGP enysrev.c 75 008) oras0s

The interaction between HQ and q and g is described by Born type diagrams

@ exp(-m_¥r,

do g o (5 — flfzzlz s 1 (g)@e V(r) ~ p(T")
- [ 4 — + _—] @ggry'

dt mle — M2)2L{t — KN, )2 t—rxmy 2 O

g/g is randomly chosen from a Fermi/Bose distribution with the hydro cell temperature

coupling constant and infrared screening are input

If t is small (<<T) : Born has to be replaced
by a hard thermal loop (HTL) approach
For t>T Born approximation is (almost) ok

(Braaten and Thoma PRD441298,2625) for QED:
Energy loss indep. of the artificial scale t* which
separates the regimes

Peshier 0801.0595 Extension to QCD (PRC78:014904)
based on universality

constraint of Dokshitzer K = 02

02 01 1
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Vv, tests the late stage of the expansion
0.6 T I I
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J/p creation in heavy ion collisions

Starting point: von Neumann equation for the density matrix of all particles

5',DN/5t = —E[H, PN] Wlth H = EiKi + Ei}jp}j
gives the probability that at time t the state ® is produced:

P*(t) = Tr[p® py (t)] p? = [U? >< Wy
- L N
This is the solution if we could calculate the quantal p (f)
In our semiclassical approach (correlations are lost) preferable to calculate the rate

i & T
S A )] P*(T) = /D I (t)dt

() dt dt

For time independent p*

I® =Tr(p®dp™ (t)/dt) = —iTr(p®[H.pN (t)]) = =iTr(p®[Ur2. pV])
Upp = Z(VMJFVQ})
j<3
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J/p creation in heavy ion collisions

Heavy ion studies (BUU,QMD,PHSD) have shown that we obtain very
satisfying results if we assume

W = <\\\classic >
We assume in addition that heavy quarks and QGP partons interact
by collisions only

N

dP(IJ(f) 3 3 s d re
- = H/ d’rjd’p; WP WL ()

with
TWE(0) = S 0 WE (). p}.1) (19
+ Ejzgznb‘(t - t@j('n.-))
(Wy{r}Ap};.t+6) =Wr{Hrk {p}.t —¢))
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J/p creation in heavy ion collisions

If the collisions are point like in time and if W% (ry,rs, p1. p2) is time independent

N
I'?(t) = Z Zrﬁ(t—tij(n]) H /d?'rt-dspi
k=1

i=1,2 >3
: W"”E(I‘l -T2, P1. Pz)
- [Wy({r,p}it+¢€) = Wy({r,p};t —¢)]

W- QObar

t+e

=t

t-€

4.8
QGP parton
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J/g creation in heavy ion collisions

Lattice calc: In an expanding QGP W*(r1.r2.p1,p2) depends
on the temperature and hence on time

Parametrization of the lattice results (Lafferty and Rothkopf PRD 101,056010)

8 r o
6 [ 1MV = {10 _
) Resonant state ||| | 13: M(\, LOT Oyigner =213 <r#>
— || . 175 MeV =

| \ " LMV - ] o

o 200 MeV R. Katz, thesis
ol N 't J0MeV=| o6

— }
( :
| 4 0.15 0.20 0.25 0.30 0.35 0.40
U [G(,‘\"Y] T(GeV)

This creates an additional rate, called local rate.
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Local Rate

Lattice : J/p wavefct is a function of the local QGP temperature
The QGP temperature decreases during the expansion
-> J/y wavefct becomes time dependent
creates for T<T 4., =400 MeV a local J/y prod. rate

[ioc = (2R)° ] dPrd’p Wog(r.p.t)We(r, p. T(t)).

: 2 2 o 2_2
= [ Bradp 16 . r° oT)p — (2
/ p (W}BJ(T(t))(JS(T) ﬁg }E

Total J/y multiplicity at time t is then given by

t

PQ@(t) — Ppnm(tf?'u?)—i_/ (FCUII,Q@({)—FF]DC,QQ (t‘r])dtr

1Q.Q

init

Fort — P(t) is the observable J/w multiplicity
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Interaction of ¢ and cbar in the QGP

V(r) = attractive potential between ¢ and cbar (PRD101,056010)
We work in leading order in 7

2 2.2 2.2
L=—~"tme* —V(r) H = \/m.z—l—pg—l—p—g—l—V(T) P°=pr+ /1
- ‘
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: B N
_ ped OV 2
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Conseqguences of the ¢ cbar Interaction

Qq and Qg collisions shift p; spectra

to lower values
(as for D mesons)

QQbar potential interaction increases

the production rate
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Influence of the Corona

Standard hydrodynamical calculations (EPOS 2) show two classes of particles
of initially produced particles:

Core particles which become part of QGP

Corona particles from the surface of the interaction zone . W
(energy density too low, no collision after production - like pp) C '

importent for high pt and for v2 1/
Confirmed by centrality dependence of multiplicity

For elementary particles it is easy to define corona and core particle
For J/w mesons we use working description:

Corona J/y are those where none of its constituents suffers from a momentum
change of q > Q.. - Larger q would destroy a J/y.
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Comparison with ALICE data

Caution: excited state decay, b decay and hadronic rescattering not in yet
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Comparison with ALICE data
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Comparison with ALICE data
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Summary

New microscopic approach which follows each ¢ and cbar from creation until detection as J/y

A\

A\

\74

(no rate equation, no Fokker Planck eq., no thermal assumptions)
c and cbar are created in initial hard collisions (controlled by pp data)
when entering the QGP J/p become unstable

c and cbar interact by potential interaction (lattice potential)
¢ and cbar interact by collisions with g,g from QGP

when T < Ty, =400 MeV J/y can be formed (and later destroyed)
described by Wigner density formalism (as in pp)

Including corona J/&, preliminary results agree reasonably with ALICE data for R,, as well as for v, .

The later production (over) compensates the expected multiplicity
increase (with respect to pp) due to ¢ and cbar from different vertices

Has many common features with open quantum system approach (however bottom up)

a lot remains to be done.
Follow the color structure, excited states

Relativistic kinematics, J/@ interaction in the hadronic expansion
Collisions of preformed J/y (r < interaction range) with QGP partons (dipole cross section)

27




Our approach and open quantum systems

Von Neuman eqg.

‘ ‘ Z . .

dpn /Ot = —E[H,PN] H=Hi2+Hyx_2+U;> Uro=%X;Vi; +X,;Va,
Prob. to find quarkonium P (t) = Tr[p® pn (1)] with [p® Hi2] =0 [p® Hy_2]=0
Quarkonium rate: dP®(t)

= I (t) = _T—:T?'[,G‘IJ[ULLPN(?'«L)”

) ; )
dpn (t)/0t = _Ezj (K. pn ()] — Ek::-} Viks pn (2)]-
Interaction: coll. heavy quarks — partons: _L ki [Vik, pn (1)] = (Bps i X00(t — tik(n))

Wy {r}.{p}.t +€) = Wr({r}.{p}.t —¢))).
yields

N
T e 3
dr;d°p; Wi W5 (t) = B f [[°rid’p; W'TI%EWEG)

t .
) 17
Stems) in the quantahw:vnian motion regime

d3k 1 L= -
2 pit) = _EL +afi) +3 1= {c*n(a ,oc“*m—§{Cf;(k)crntk).p}]

Lindblad eq. (open quantum

Miura, Akamatsu , 2205.15551
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new description of ¢ and cbar potential interaction

Not used in the present calculation
Extension to a real relativistic two body kinematics:
Energy and time constraints reduce 8 dim - 6+1 dim phase space

energy constraints generalized Poisson brackets
1 ‘ 0JA 0B 0B 0A

by = = (DD — > ~ AB=) —i— = 55
Pa 2 (pa,upa. mg + (I)) 0 { } P ()J{f ()p;\.._’u ()JE dpl.f,u

which gives the time evolution equations

iy ={ah. da} 1 Ph={P' da}
to know what the dot means we need time fixations to the system time
1 T 1 T |
1 = 5(1"1 —)U, 1 2= i(;}_.‘l + ) U, —7 =0
where U is the center of mass velocity
for details: Marty et al. PRC87,034912
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new description of ¢ and cbar potential interaction

Fiziev and Todorov (PRD63,104007)
approximation which allows for a separation of CM and relative motion

,. |
¢=H= ﬂ(fﬁez — i+ @)

2_m32 m3 — m3

s—mi—mj _??]2,”?2 o
—5 = : _ m Yy — Uy =
pn = 27 with pipy = " =2, TS
- em cmo cm ' g '
Prel = 2P1 2Py :
V41 =1

H can be rewritten (for Coulomb) with the time evolution egs.
ho oH  u,
1 J? e? . T Ou, N
H=—(u*+ +1— (e +—)? } ‘ ‘
Q)\( o2 ( r )) , OH  J* e+ %)
U, = — = —
" Or A3 72
J: angular momentum ; o/
. 1] = _—
g ¢ a7 2
Bl: const . OH
19J0)
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