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The LHC is a very jetty place

Event: 857582452

= Strongly interacting quarks and gluons
produced in the LHC collisions hadronise
and produce a cascade of particles, which
can be collected using some specialised
algorithms to build what we call “jets”

= Jets are ubiquitous in LHC analyses for

new physics searches and Standard Model EXPERIMENT
measu rements Standard Model Production Cross Section Measurements Status: February 2022
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Hadronic object reconstruction in ATLAS:

Jet and missing transverse energy

= Steps in jet building:

s Inputs/constituents: jets are reconstructed / / / /
from 4-vectors inputs representing the | / / /
hadronic flow, such as tracks, calorimeter —
clusters, truth particles / / /

= Reconstruction: group constituents with a / / /
proper jet algorithm. Apply “grooming” (PU

mitigation)
= Calibration: to correct the jet energy (and / l/ / / /

also the mass in some cases) scale / /M/ /

s Tagging: studying its substructure we can 7
identify which particle is at the origin of the 7 ,
jet, e.g. is a quark or a gluon? Or rather a
vector boson? Is it Higgs or a top quark?

« Missing transverse momentum (p_™) Adapted from P-A Delsart, ICHEP2022

= Calculated from the negative sum of the
momenta the calibrated hard objects in the
event; electrons, muons, 1-jets, photons, and
jets

s For soft energy; tracks from the PV not
associated with hard objects are included



Hadronic object reconstruction in ATLAS:

Jet and missing transverse energy

= Steps in jet building:

= Inputs/constituents: jets are reconstructed
from 4-vectors inputs representing the
hadronic flow, such as tracks, calorimeter
clusters, truth particles

Reconstruction: group constituents with a
proper jet algorithm. Apply “grooming” (PU
mitigation)

Calibration: to correct the jet energy (and
also the mass in some cases) scale
Tagging: studying its substructure we can
identify which particle is at the origin of the
jet, e.g. is a quark or a gluon? Or rather a
vector boson? Is it Higgs or a top quark?

- Missing transverse momentum (p_™*)

= Calculated from the negative sum of the
momenta the calibrated hard objects in the
event; electrons, muons, T1-jets, photons, and
jets

s For soft energy; tracks from the PV not
associated with hard objects are included

All these steps are promising
settings for cutting-edge machine
learning and artificial intelligence
algorithms at the LHC!

Selection of 4 ATLAS recent
developments to improve hadronic
object performance with ML

In 15mins | can’t cover everything
and there is much more
information in the links

For more information about other
developments, with a focus on
small-radius jets, please see

L. Ginabat's talk


https://indico.cern.ch/event/1158681/contributions/5194016/

Our tools

The LHC and ATLAS

= A proton-proton collider of 27 Km
circumference situated at CERN. Currently a8 B
running at a center-of-mass energy of 13.6 : =t
TeV since 2022 "

= Fantastic machines with capabilities
beyond design zsm

= ATLAS is a non-specialized detector:

LAr hadronic end-cap and

. N Y/ : , forward calorimeters
s Excellent vertex and tracking systems U s - I
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Classifying and calibrating clusters with ML

arXiv:1603.02934

= Qur basic calorimeter energy reconstruction
is based on topoclusters

= Current approach: PEMCEEM, Detus, Petus/ Ep Actus)
s Cluster classification (PEMcIus) based on SR e e i s
geometric and signal moments per-cluster 5 % HAD-lke :!g: g
s Cluster calibration through Local Hadronic § 2:§_ emie 3 1%7 =
Cell Weighting (LCW) based on local properties = - | :Zg
= All this in order to take into account the non- | sE ATLAS = om E W
compensating nature of our calorimeter: different £ Smuaton s
response for 1*,1° JoF 20<n. |<22.426ev<E, <77cev {02
é \s =8 TeV, u = 30, At = 50 ns Noise assumed g 0.1
09858 75 7 65 6 55 5 45 4 O
s New developments . log10(<p_ > (MeV/mm?)) - log10(E_ _ (MeV))
s What if the many cells in topoclusters are
represented in a different way using ML? P apraraas B Y mpmrans
Could we improve the classification and 5% e i R i it
calibration? oo 5
= Images (1 cell = 1 pixel) — Convolutional NN oo s - I
(CNN) o I LYo
s Point clouds (1 cell = 1 point) — e i
DeepSets/ParticleFlow Network (PFN) B ST e e T
= Graphs (1 cell = 1 node) — Graph NN (GNN) Inputs examples used for CNN


https://arxiv.org/abs/1603.02934

Classifying and calibrating clusters with ML

= Classification of isolated charged vs neutral

pions in simulation:

= DNN, CNN and PFN compared with ATLAS

standard technique (P )

= ML improves rejection by factor >5

s Calibrating the classified

cluster energy response

s Compared with ATLAS
uncalibrated (EM) and
calibrated (LCW) clusters

s ML improves the response
and resolution

s More results using also
tracking information in PUB
note link!

Response Median

ATL-PHYS-PUB-2020-018

-§ - pEM
8 108k ATLAS Simulation Preliminary D,fl',‘\“
(o)
o« Classification of ©* vs 0 CNN
Ot:‘ DenseNet
102} =
101} B ~o
\\\
So
i \
S \
~ |
L
\\
0 L L L L L L L
960 065 070 075 080 085 080 095 _ 1.00
nt Efficiency
sal15 ;
o3
2 10
o
2 sb -
= 5L
£ +________ ™~
Q60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
ATL-PHYS-PUB-2020-018 ATL-PHYS-PUB-2020-018
1.30 . . =030 ' '
EM s EM
S B — = LCW
1.25 \\ ATLAS OSimulation Preliminary ;(’:\‘V,z 2 025 Bl
8 Single n”, All Clusters ORI :\‘< CNN
1.20f DenseNet | ol \ DenseNet
~ = 02013 ]
\ . i -
1.15 \ g \ ATLAS Simulation Preliminary
Bo1sk Single n%, All Clusters
1.10f \ s 0 \
; \_
1.05f = o 010 N
h —_ R 7
) e WP R—— . - - L & N~
: N— 0.05 S
i, Ve
—~———e
0.95 ' : : oW
‘ 100 10° 102 108 0.00 - L . A
True Energy [GeV] 10 10 10 10

True Energy [GeV]

“This work demonstrates the potential of deep-learning based low-level hadronic calibrations to significantly improve

the quality of particle reconstruction in the ATLAS Calorimeter”
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https://cds.cern.ch/record/2724632/
https://cds.cern.ch/record/2724632/
https://cds.cern.ch/record/2724632/

A new set of constituents/inputs: Unified Flow Objects

= During Run-1 mostly calorimeter information Wocedcels (B2 g
was used: topoclusters E Bk
S Ot

» In Run-2 we started exploiting as well the
information from the inner detector: Topo-clusters
» Particle Flow (PFlow) algorithm: tracks with B : ] |
good momentum resolution extrapolated to Y AT

calorimeter, cell-by-cell subtraction of their
deposited energy. At high p_ tracks are ignored

s Track-calo cluster (TCC) algorithm: effectively
uses tracks to split up large clusters at high p_, get

3 /
/’f Tracker <

N

Eur. Phys. J. C 81 (2021) 334

c 0471 T T ]

. - _— . : 7

energy from clusters but angles from tracks. At 3 oas- T ST e S E

low p_ clusters-only are used 8  F o CSHSKUFOTAmming [hwi<yp oo E

T @ 03[ ... CS+SKUFO Soft Drop JESMS =

© [ e CS+SK UFO Recursive SD o

) ) , E 0.25(........ CS+SK UFO Bottom-up SD — =

= Current state of the art is combination of TCC 3 ¢ |~ E

and PFlow o1sb. r c

s Unified Flow Objects (UFO) 01 ....... ]

= UFO combines advantages: good angular 0.05¢- E
resolution of tracker and good energy resolution 0500 7000 71500 2000 2500

from calorimeter P [GeV]

UFO currently being commissioned
as baseline for large-radius jets 8


https://arxiv.org/abs/2009.04986

W/Z boosted boson tagging with UFO jets

s ATLAS has developed W/Z/H/top taggers in the last
years taking advantage of the characteristic internal
substructure of the large-R jets depending on their origin ®

= Two kind of multivariate taggers being used at the e 'fl;_,\/\' T '
moment
s Moment-based (3-var) taggers: ldentify jet \ \

substructure moments with good separation power,
and apply cuts on them
s ML using high level features: to exploit complex

substructure correlations . 3-var: p_-dependent cuts on:
ATL-PHYS-PUB-2022-39 i

2 T T T T T T T T T T L e e e e e e e L J et maSS

g | ATLAS Simulation Preliminary ] |~ ATLAS Simulation Preliminary ] * Number of associated
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% L anti-k, R=1.0 UFO Soft-Drop CS+SK jets 4 % - sTieTe Jettagaing i LCTopo ] tdrIaS%l:ISrn Ignoa?gl’q Uark/g I uon
= E;?I =50% nalytica § B ]

g - CSton m, from 3-var tagger —-—g-v‘:r I +“ZA:: e L nominal — NN — NN | o D Correlation function.

g tas 3var™ e 200 _® 2 ) )

2 ¥ P exploit 2-prongedness of

T \IHHl

10?

W/Z boson decay
* ML: Neural network with >10
different inputs

* Decorrelated versions:
« Tagger may introduce

T II\IIIW

R P SR L R T It w1 unwanted mass shaping of
1000 2000 Large-Rlotp, [Ge'°§8°° 02 03 04 05 06 0.7Signce)l.l8efficic<)e'r?cy E;?J the backgroun d
» Adversarial Neural
ANN comparable with 3-variable Background rejection improved by factor Network (ANN)
tagger, but with decorrelation 2-3 in NN UFO tagger w.r.t .NN LCTopo successfully decorrelates

tagger 9


https://cds.cern.ch/record/2825328/

Boosted top tagging with UFO jets

= Two Deep-NN based top taggers defined: Non-contained Contained
s Contained and inclusive (any jet that contains t—— t——

parts of the decay) tops
s For 50% and 80% signal efficiency, p_-dependent

s 15 different jet substructure variables used as inputs RILERYSsRCB22 020

) s pT——— T —— T T T -

§ 140~  ATLAS Simulation Prelimi —— ¢, = 50%, LCTopo trimmed —]

(see backup for full list) B e s ™ L oo LCTopowemmed
2120 — anti-k, R = 1.0 jets — &4, = 50%, UFO SoftDrop  —

g - Contained top tagger === g4y = 80%, UFO SoftDrop -

S b H - © 100[— —]

s O m e O Se rvat | 0 n S . 2 Parton-based truth label .
S 80 —

. . . 60 =

s 80% working point: 404|—|_|ﬁ E

s Inclusive: ~20% better rejection for p_<1.5 TeV

||||!||H|||_\I:IE||I|\II|III|II\

20 —
s Contained: Better over whole range wrt LCTopo g gt T
taggers e o2
s 50% working point: clear improvement for inclusive 2 1B T T
and contained tOp taggerS § =560 1000 1500 5000 2800 3000

Reconstructed jet P, [GeV]
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https://cds.cern.ch/record/2776782/files/ATL-PHYS-PUB-2021-028.pdf

Boosted top tagging with UFO jets: constituent-based

s Another recent development are

constituent-based top taggers:

s Using low-level features based on 4-vectors
of jet constituents. The information is
combined with larger and more complex ML

classifiers
s Constituent level information pre-processed
to exploit known symmetries

] . ‘_c) T T
« Contained boosted top case considered '(35 ATLAS Simulation Preliminary ParticleNet

106 Vs =13 TeV, Pythia8 PFN —
. . anti-k;, R=1.0 UFO SD jets DNN

s What algorlthms were studied? 105 2 pr> 350 GeV, || < 2.0, m > 40 GeV hIDNN
EFN

ResNet50 |

Contained

t —

ATL-PHYS-PUB-2022-039

s hIDNN: Baseline similar to DNN top tagger 10

used by ATLAS in Run-2 108 —

: Using constituent 4-momenta
EFN/PFEN: Energy/Particle-flow networks
ResNet50: CNN using jet images 107 n
: Dynamic Graph-CNN 100

1021— -

0.0 0.2 0.4 06 08 1.0
Esig

. and PFN show best performance Simulated dataset used for training is public

s More details in next slide and documented:
http://opendata.cern.ch/record/15013

= Some observations:


https://cds.cern.ch/record/2825328/
http://opendata.cern.ch/record/15013

Boosted top tagging with UFO jets: constituent-based

and PFN achieve ~2-3x

ATL-PHYS-PUB-2022-039

improvement in backg round rejection - ATLAS Simuition Prefiminary ParticleNet
. . 250 | V's=13TeV, Pythia8 PFN —
acCross k|nemat|c range anti-k, R=1.0 UFO SD jets hIDNN
pr> 350 GeV, |n| <2.0, m > 40 GeV .
200} Signal eff = 50%
s The MC modelling dependence was
also studied for these new taggers: 180/~ B
. . 100 — —
s PFN and Particle Net show increased model
dependence wrt hIDNN (baseline) sol- i
s Contributing to modelling uncertainties in
physics analyses. Important to understand L
the cause for future developments! Jet pT (TeV)
s To reduce the MC modelling uncertainty
dedicated calibrations could be derived
@ 10 : : : : o 10 : : : : o 10 : : : :
W ATLAS Simulation Preliminary ~ —— » 4 W ATLAS simulation Preliminary —_— 7 W ATLAS simulation Preliminary . 7 _,
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0.6~ 3‘_‘_;;.___ _____ — 06~ — 0.6\~ —
N e e :‘L_.-___.:"" _________ ===y
0.4 —_'—L_'J imh | 0.4 B rrrr=e Wit S 04 TEEm T ey s
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https://cds.cern.ch/record/2825328/

METNet: a MET combined working point using NN

= MET corresponds to the experimental proxy for the transverse momentum of

undetected particles
= Real MET: neutrinos, stable BSM particles, e.g. dark matter
= Fake MET: smearing from pile-up, mis-measured objects, finite detector acceptance, etc

s Current approach in ATLAS: Object based MET reconstruction method
= Calculated from the negative sum of the momenta the calibrated hard objects
« Several different selections on jets are supported e.g. "tight™: higher p_ cuts on forward

jets — Different MET working points

Specified by MET WP
(Tight/LooselTenacious...)
Electrons mﬂ { 3 }

___*/ By = PT - Z w- Y e Z P - Z - D P
unused
tracks

) S ‘I- cted pl d accepted pl d
' electrons l | No r-leptons
. L JL L IL L
~MISS, € ~IMISS, Y T miss, jet
efs
L
t

Y pMISS TRy 000 geMiss N7 < . Je ~miss, soft
E E E E, E]

soft term

4
=
]
a
e
1]

= New developments:
s Currently analyses chose one MET working point to use for every event... But the

optimal one for a given event depends on the pile-up and event topologies
s What if we could pick a different MET working point for each event?

s Could ML help us?
13



METNet: a MET combined working point using NN

ATL-PHYS-PUB-2021-025

« METNet is a neural network trainedon - _ AF‘AVSTEBA20

. v . >0 imulation Preliminary < Tj <+ Tenacious |
simulation to perform a regression 8 favserste e T e
. Uses p_™* and event kinematics and gt top- o T ey

X,y
w
o

conditions as inputs

. . . . - antit ;
= Trained on a mix of topologies: top-antitop, B> ool ant Oi:tiM

_p'

——
WW and ZZ events z | 1:1:+*#_EE,_*...

= Resulting in: £,

= Improved resolution when comparing § oSt - .

with ATLAS current standard working =~} F oo e

points Nev

= Even when studying processes not included ATL-PHYS-PUB-2021-025

in the training like single top and Z = pu 3 a0} ATLASSImuation Preiminary '« Tight  + Tenacious ]

. Good p_™* response and distribution bias % o % e I WETGHED ]

s Use of additional "Sinkhorn" loss can help . T Z- pp g

with tails 2 ‘:

.. C . %‘5 = ii?%_,;

« Promising studies indicate potential to P e == = = S S

significantly improve p_™* resolution using =" et ier s iaesiios s suee s iaeens ':
ML techniques 5 15
= Further optimisations are possible, e.g. < 1.00

including tracking information
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-025/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-025/

Summarising

= Hadronic objects reconstruction,
calibration and tagging important for
precision measurements and BSM
exploration at the LHC (and beyond)

= Great deal of improvements in the field

during Run-2 and the LS2 from cutting-
edge machine learning and artificial

intelligence algorithms
= Also exploring different techniques and
phase-spaces (see L. Ginabat's talk)

= Run-3 just started, a great opportunity
to exploit these developments and
continue refining our strategies

= Lots of work ongoing in that direction,

stay tuned!
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https://indico.cern.ch/event/1158681/contributions/5194016/

BACKUP
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Substructure variables

W/Z tagger (NN/ANN) Top tagger (DNN)
D>, (; Energy correlation ratios T1, T2, T3, T4 N-subjettiness
71  N-subjettiness Vdi, \V/dos  Splitting scales
Ry  Fox-Wolfram moment  ECF;, ECF,, ECF; Energy correlation (EC) functions
P Planar flow C2, D> EC ratios
as  Angularity L>, L3 Generalised EC ratios
A Aplanarity Qw Invariant mass / virtuality
Zcwt  Z-—Splitting scales Tm  Thrust major

v di2  d—Splitting scales
KtAR  k:-subjet AR
nyk  nhumber of tracks
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Adversarial Neural Network

Adversarial Neural Network

\d Al d -
" 2] o 0 = 2 8 s | 8
= poir( y | X, O -
s = : = - ek ‘® | g o s ° - Paod( 123,800,
x B N i b (o) U n (- - @ | () B o @
a o o o & . - m m jaf 8 oMM | | o
o IS 2 5] @] B B B a B
o o n [} m I8 |54 =1 "
| J _/
x3 m ]
Lo ( ) Laav( )
Classifier Network Adversary Network
+ Classifies signal vs. background jets by computing z. « Infers jet mass d, by constructing a Gaussian
Mixture Model pdf and computin d).
+ Feed-forwards z to adversary. P puting p(d)
: . » Loss function = - log p(d)
+ Mass decorrelation by minimizing jet mass
information in z and making it harder for the « Back-propagates loss via a gradient reversal channel

Adversary to infer jet mass. to classifier (controlled by A).

Joint Objectives: signal vs. background jet classification + minimal jet mass correlation.
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Top constituent-based tagger

Model AUC | ACC s;,},g @ g4ig = 0.5 s;,f,g @ g4;y =0.8 | #Params | Inference Time
ResNet 50 | 0.885 | 0.803 21.4 5.13 1,486,209 9 ms
EFN 0.901 | 0.819 26.6 6.12 1,670,451 4 ms
hIDNN 0.938 | 0.863 51.5 10.5 93,151 3 ms
DNN 0.942 | 0.868 67.7 12.0 876,641 3 ms
PFEN 0.954 | 0.882 108.0 15.9 689,801 4 ms
ParticleNet | 0.961 | 0.894 153.7 20.4 764,887 38 ms

ATL-PHYS-PUB-2022-39
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UFO algorithm

Inner-detector
tracks

Particle-flow
objects (PFOs)

CS+SK
4

Charged
PFO?

Primary
vertex?

TCC cluster
splitting on neutral

Neutral PFOs

Charged PFOs

h

CHS

PFOs with primary-
vertex tracks &
charged PFOs.

Dense
environment?

A 4

A 4

Unified
Flow
Objects
(UFOs)

21)

20

Eur. Phys. J. C 81, 334 (
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A new set of constituents/inputs: Unified Flow Objects

= UFO currently being commissioned as baseline for large-radius jets, following a
long-term reoptimisation campaign during Run 2 and the long shutdown that followed
= Criteria used: jet energy and mass resolution, pile-up stability, W/Z/Top tagging
performance
s Choice: UFO constituents, "Charged Subtraction"+"Soft Killer" pile-up mitigation and Soft
Drop (Z=0.1,8=1) grooming technique (to remove energy from pile-up and possibly from

underlying event
y g ) Eur. Phys. J. C 81 (2021) 4, 334

ATLAS Simulation Anti-k, R=1.0 jets, no jet calibrations applied H
= Vs=13TeV, W — qg 300 GeV < p'T"L’ < SOOIGeV, [ n'™e| <1 .Zp ATLAS choice —_
£ softDrop  Zan=0.1,4=0.0 002 ' 024 | 006 ' 012 ' 003 027 o023 >
S Zy=01,=10 _ _ _ _ 003 ! o029 0.06 012 ' o018 027 ! O]
g’ Zoy =005 =00, N=o 006 | 022 T >
il 2,4 =01,4=00,N=> | 037 0.01 020 | z
£ 2., =0.05,8=1.0,N=c 0.16 -0.24 &
g Recursive SD Zo =0.1,=1.0, N=oo 0.05 -0.25 e
o Z,4=0.058=00,N=3 0.06 -0.23 8
(5] 2,,=01,8=00,N=3 0.01 -0.22 &
© z,,=0.058=10,N=3 0.16 L I -0.24 -
- Zey=0.1,=10,N=3 _0.04 - .06 _ _0.10 - -0:25_ “©
Zy =005 =00 0.07 '_' 0.06 0.09 "_ -0.22
Bottom-up SD Zeut = 0.1, =0.0 0.02 0.10 0.03 0.05 -0.07 -0.20
Z,,=0.05,8=1.0 0.17 : ] -0.24
: Zy=01,=10 _ _ _ _004 ~ 026 006 _ 010 015 _ = -0.25_
Pruning Roy=015,2,,=025 _ | 027 _ 000 T _oi1_ _ 002 _ _004 ' 041 _ - 0.19_
fou = 5%, Ry, = 0.1 -0.03 -0.04 0.18
Trimming fou = 9%, Ry, = 0.1 | -0.03 005 ! - 0.16
fou = 5%, Ry, =0.2 * 0.14 001 ' 007 0.02 006 | -0.21 -0.25
fou = 9%, Ry, = 0.2 010 , -003 | 005 , 001 , 005 | -020 , -0.25 ,
Unmodified CS+SK 'Unmodified CS+SK  PUPPI 'Unmodified CS+SK 'Unmodified CS+SK
LC Topo PFlow TCC UFO
Jet Constituent Type

Number Primary Vertex (NPV) impact on W-jet mass 1


https://arxiv.org/abs/2009.04986

The LHC is a very jetty place

There are many EXPERIMENT

challenges and the
large number of
additional interactions
(pile-up) is one of
them

Simulated Z — uu event
R \¢ ATLAS
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Jet calibration chain

From Matt LeBlanc Semi-Visible Jets
Workshop @ ETH Zurich, July 2022

Absolute MC-based
calibration

Corrects jet 4-momentum
to the particle-level energy

scale. Both the energy and
Reconstructed pr-density-based direction are calibrated. Residual in situ
jets pile-up correction calibration

gza '* Jet finding applied to Applied as a function of Removes residual pile-up Global sequential A residual calibration
. tracking- and/or event px!e;up p; density dependence, as a calibration is applied only to data
calorimeter-based inputs. and jet area. function of u and N, to correct for data/MC
Reduces flavour dependence differences.
and energy leakage effects

using calorimeter, track, and
muon-segment variables.

ATLAS 2007.02645 (R=0.4), 1807.09477 (R=1.0)

Residual in situ
calibration

Groomed large-R jets

E, n & m calibration (LCW+JES+JMS scale)

Calorimeter energy Large-R jet Ungroomed large-R jets federaamia Groomed large-R jets
clusters (LCW scale) reconstruction (LCW scale) 8 8 (LCW scale)

Large-R jets are recon- Soft subjets are removed A correction to the jet Residual correction

structed using the anti-k; from the reconstructed energy, pseudorapidity determined using in situ

algorithm with R = 1.0. jets. and mass is derived from  measurements to bring
g',:’.o MC to bring the data in agreement with

reconstructed jet to the MC. Applied only to data.
particle jet scale.

s The jet calibration sequence corrects for pile-up, restores <pTre°°/pT"“e> = 1 with MC-based

correction, improves the resolution, and then corrects the response in data to match that in MC
s Many steps which need to be performed sequentially!
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Jet tagging: how do we calibrate the taggers?

Eur. Phys. J. C 79 (2019) 375

= Correct the tagger N
efficiency in MC to match V ;
the one in data 1

s For W/top taggers
s Primarily look at top-

. . > = T i | o f y
antltop events for S|gna| o s ¥ T { Data2015+2016 o OOEATAR { Data2015:2016 ]
. . = lepton+jets selection 4 PowhegPythiaé | lepton-jets selection +- PowhegPythia6 ]
calibration S WIS mremmen | 5 OSPW o Erssuwen
T : ° B s |
s Dijet and photon+jet s b 4 £ 04" 3
@ | op—e——e - o [} g T
T ¢ $ + = E = -
samples used for 5 g o3 |
. . o 0.5 1 (] E
calibrating background [ : ] 02 i
. t. 8 1.5F : 8 155 B
rejection e T — ¢
S o5l : 2 NN ]
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Leading large-R jet P, [GeV] Leading large-R jet P, [GeV]
s For H—bb taggers: = [io% T = 2005 ‘ 1 i
. 2 5 ATLAS —4— Data 201542016 = 5 L ATLAS —+— Data 201542016 _
s Z/gamma+jets for the R S B S o e o
. = 805 Trimmed anti-k, R=1.0 jets ;‘;Y’:ﬁ S = 1605 Trimmed anti-k, R=1.0 jets *:’“‘S“n =
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- e 60 - ®  120— =
J - —> = & s 3
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= E 3 ° ‘,.;‘“A-Un. e 3
background P o, I § oo “Hy ]
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10E s 20
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Missing transverse momentum

Table 2: Jet selections for the p%‘iss working points used in this study.

Selections
pt [GeV] for jets with: fIVT for jets with

Working point || <2.4 2.4 < || <4.5 JVT for jets with |p| < 2.4 2.5 < |n| <4.5and pt < 120 GeV
Loose > 20 > 20 > 0.5 for pr < 60 GeV jets -
Tight > 20 > 30 > 0.5 for pt < 60 GeV jets <04
Tighter > 20 > 35 > 0.5 for pt < 60 GeV jets -
Tenacious > 20 > 35 > 0091 for20 < pr <40GeV jets <0.5

> 0.59 for 40 < pt < 60 GeV jets

> 0.11 for 60 < pt < 120 GeV jets

Table 3: Input variables used for each of the Tight, Tighter, Loose, and Tenacious p?’j“ working points. Note for the

Tight working point the four soft p%‘i“ variables as well as p™* and py“‘jss are excluded.

Pr> P Py LPT
miss, jet miss, jet miss, jet et
2 S S ) A
4.1 Input and target features piit: 0 it pIi: L pit

The NN receives 60 event variables as input features, including:

i o . . . . Table 4: Lepton p™S term input variables.
1. pT* predictions and unique jet- and soft- terms for each working point (see Table 3). T

miss, e miss, e miss, e e
. pr° px C py C LpY
2. Lepton pf™ terms (see Table 4). These terms are independent of the working point used. Pyt Py pg o Eph

3. Additional variables which characterise the pile-up and topology of each event (see Table 5). Table 5: Additional input variables

Input features for both training and testing data are passed through two pre-processing steps: = fi> Meanmonbe ofifterackons perbiich crossing
P J J p & pre-p g step Npy Number of primary vertices with at least 2 associated tracks
iss, Tight . ‘ g 0 i i i : : 2 S
(1) Rotate each event such that prmss, 1g points along the x-axis by construction. This removes ¢ Npy2 Number of primary vert%ces W%th at least 2 assoc%ated tracks, excluding the hard-scatter vertex
. . . . T . .. .. Npys+ Number of primary vertices with at least 4 associated tracks
invariance from the inputs, increasing the statistical power of the training data. Nex  Number of ID tracks associated with the primary vertex

i i 5 5 oy N? Number of baseline electrons
(2) Standardise each input and output variable by subtracting the mean and dividing by the standard NP Nuinberof baselifie muons

deviation. This is standard practice for deep learning regression problems. Ne Number of signal electrons
N, Number of signal muons
Ny Number of signal jets
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ATLAS calorimeters

ATLAS Calorimeters

@ EM: [n| < 3.2,

Pb/LAr calorimeter,

22-26 Xp, 1.2 A,

3 longitudinal sections,

An x Ad = 0.025 x 0.025 — 0.1 x 0.1
o/E ~ 10%/VE.

@ Central Hadronic: || < 1.7,

@ Fe/Scintillator sampling calorimeter

@ 74X,

@ 3 longitudinal sections,

Q@ AnxAd=0.1x01-0.2x 0.1,
@ o/E ~50%/VE & 0.03.

@ EndCap Hadronic: 1.7 < || < 3.2,

@ Cu/LAr sampling calorimeter,

@ 4 longitudinal sections,
Q@ ApxAd=01x01-02x0.2

@ FCAL:3 < |n| < 4.9,

@ EM: Cu/LAr, HAD: W/LAr calorimeter,

@ 10X,

@ 1 EM + 2 HAD longitudinal sections,

Q@ An x Ad=0.75x0.65—-54 x 4.7
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