

Overview of the LHCb experiment

Andrea Contu on behalf of the LHCb Collaboration

8th International conference on High Energy Physics in the LHC Era

9-13 January 2023

Outline

- Introduction to LHCb detector and physics
- Selected recent measurements
 - LFU in $b \rightarrow sl^{+}l^{-}$ (for LFU in $b \rightarrow clv$ see <u>laroslava Bezshviko's talk</u>)
 - CKM structure and CPV in beauty and Charm
 - W mass measurement
 - Antiproton production in p-He collisions
 - Spectroscopy
- A look into the future: the upcoming LHCb upgrade and Upgrade II

Why study flavour physics (at hadronic machines)?

It may answer fundamental questions

- Why are there 3 fermion generations? Only 3?
- Hierarchy in Yukawa couplings?
- CPV in quark sector is too small to explain the matter-antimatter asymmetry in the universe. Are there other sources of CPV?
- Flavour physics provides a unique window into new physics through indirect searches (potentially sensitive to higher energy scales than direct searches)

The LHCb Collaboration

- About 1400
 scientists, engineers
 and technicians
- 86 different universities and laboratories from 18 countries

The LHCb detector in Run 1 and Run 2 (2011-2018)

- Excellent particle identification, IP and momentum resolution (~13 μm on the transverse plane and Δp/p ~ 0.5% 0.8%, respectively.)
- Huge beauty and charm production

$$\sigma(pp o bar bX)_{2<\eta<5}=144\pm1\pm21\mu{
m b}$$
 [PRL 119, 169901 (2017)]

 $\sigma(pp \to c\overline{c}X)_{p_{\mathrm{T}} < 8 \text{ GeV/c}, 2.0 < y < 4.5} = 2369 \pm 3 \pm 152 \pm 118 \,\mu\text{b}.$

LHCb Trigger System

Run1 and Run2 data takings

- Running with luminosity levelling at $= 4 \times 10^{32} \text{cm}^{-2} \text{ s}^{-1}$, **2x design luminosity!**
- Roughly 1.5 interactions per bunch crossing
- Total of 9 fb ⁻¹ collected

Not just a flavour physics experiment

More than 600 papers!

- Mixing and CP violation in B decays
- Rare B/D/K decays
- Charm decays
- Semileptonic B decays
- Spectroscopy and exotic hadrons
- Hadron production
- Heavy ion physics, fixed target with SMOG
- Electroweak physics, QCD
- Exotics (dark matter, long-lived particles)

Probing NP with $b \rightarrow sl^+l^-$

- Suppressed at tree level, potentially sensitive to NP at the TeV scale
- Dimuonic channels show discrepancies with SM at roughly 3 sigmas in differential decay rates and angular analyses

However charm loops may mimic discrepancies in C₉ in angular analysis

LHCb LFU tests (superseded)

- Can NP be generation dependent?
- Measure differential branching fraction vs dilepton invariant mass

$$R_H \equiv rac{\int_{q_{
m min}}^{q_{
m max}^2} rac{\mathrm{d}\mathcal{B} \ (B
ightarrow H \mu^+ \mu^-)}{\mathrm{d}q^2} \mathrm{d}q^2}{\int_{q_{
m min}}^{q_{
m max}^2} rac{\mathrm{d}\mathcal{B} \ (B
ightarrow H e^+ e^-)}{\mathrm{d}q^2} \mathrm{d}q^2}$$

Experimentally accessible through a double-ratio measurement

$$R_K = \frac{\mathcal{B} \ (B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B} \ (B^+ \to J/\psi(\to \mu^+ \mu^-) K^+)} / \frac{\mathcal{B} \ (B^+ \to K^+ e^+ e^-)}{\mathcal{B} \ (B^+ \to J/\psi(\to e^+ e^-) K^+)}$$

Nature Physics 18, 277–282 (2022)

Tension with the SM at 3.10

arxiv:2212.09152

 9 fb^{-1}

LHCb

5000

5000

(32.00]

(32.00 MeV/ c^2)

 R_K central- q^2

 R_{K^*} central- q^2

Combinatorial

5500

5500

 $m(K^+\pi^-e^+e^-) [\text{MeV}/c^2]$

 $m(K^+e^+e^-) [\text{MeV}/c^2]$

Improved lepton universality measurement

- Simultaneous analysis of R_{κ} and R_{κ^*}
- Most precise and accurate LFU test in b→s/l transitions
- New data driven treatment of misidentified background

- low- q^2 : $q^2 \in [0.1,1.1] \text{ GeV}^2/c^4$ central- q^2 : $q^2 \in [1.1,6.0] \text{ GeV}^2/c^4$
 - . *q* C[1.1,0.0] Ge + 70

 $m(K^+e^+e^-) [\text{MeV}/c^2]$

5500

 $m(K^+\pi^-e^+e^-) [\text{MeV}/c^2]$

 9 fb^{-1}

LHCb

 9 fb^{-1}

• Measurement still statistically dominated

Details at R. Quagliani CERN Seminar

6000

The CKM matrix

Describes the transition between quark flavours via weak interaction

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta s} & |V_{tb}| \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \lambda^{2}/2 - \lambda^{4}/8 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda + A^{2}\lambda^{5} \left[1 - 2(\rho + i\eta)\right]/2 & 1 - \lambda^{2}/2 - \lambda^{4}(1 + 4A^{2})/8 & A\lambda^{2} \\ A\lambda^{3} \left[1 - (\rho + i\eta)(1 - \lambda^{2}/2)\right] & -A\lambda^{2} + A\lambda^{4} \left[1 - 2(\rho + i\eta)\right]/2 & 1 - A^{2}\lambda^{4}/2 \end{pmatrix} + \mathcal{O}(\lambda^{6})$$
Wolfenstein parametrisation
$$\lambda = \sin(\theta_{c}) \approx 0.22, \quad \eta \approx 0.3$$

Unitarity conditions → unitarity triangles

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
 $V_{us}V_{ub}^* + V_{cs}V_{cb}^* + V_{ts}V_{tb}^* = 0$

The CKM matrix

Describes the transition between quark flavours via weak interaction

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta s} & |V_{tb}| \end{pmatrix}$$

$$= \begin{pmatrix} 1 - \lambda^{2}/2 - \lambda^{4}/8 & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda + A^{2}\lambda^{5} \left[1 - 2(\rho + i\eta)\right]/2 & 1 - \lambda^{2}/2 - \lambda^{4}(1 + 4A^{2})/8 & A\lambda^{2} \\ A\lambda^{3} \left[1 - (\rho + i\eta)(1 - \lambda^{2}/2)\right] & -A\lambda^{2} + A\lambda^{4} \left[1 - 2(\rho + i\eta)\right]/2 & 1 - A^{2}\lambda^{4}/2 \end{pmatrix} + \mathcal{O}(\lambda^{6})$$
Wolfenstein parametrisation
$$\lambda = \sin(\theta_{c}) \approx 0.22, \quad \eta \approx 0.3$$

- 3 quark generations allow for CPV through the phase η
- Due to the CKM structure the B system is favourable for CPV studies, on the contrary, CPV in the Charm sector is predicted to be small since amplitudes are dominated by the first two generations

CKM γ angle from $B^{\pm} \rightarrow D(\rightarrow K\pi\pi\pi)K^{\pm}$

- Precision measurements of the consistency of the unitarity triangles are a powerful tests of the SM.
- Recent LHCb measurement with the full dataset

$$\frac{\Gamma\left(B^{\pm} \to D\left[K^{\mp}\pi^{\pm}\pi^{\pm}\pi^{\mp}\right]K^{\pm}\right)}{\Gamma\left(B^{\pm} \to D\left[K^{\pm}\pi^{\mp}\pi^{\mp}\pi^{\pm}\right]K^{\pm}\right)} = \frac{r_{K3\pi}^{2} + (r_{B}^{K})^{2} + 2r_{K3\pi}r_{B}^{K}R_{K3\pi}\cos(\delta_{B}^{K} + \delta_{K3\pi} \pm \gamma)}{1 + (r_{K3\pi}^{2}r_{B}^{K})^{2} + 2r_{K3\pi}r_{B}^{K}R_{K3\pi}\cos(\delta_{B}^{K} - \delta_{K3\pi} \pm \gamma)}$$

$$\frac{250}{9 \text{ fb}^{-1}}$$

$$B^{-} \to DK^{-}$$

$$B^{+} \to DK^{+}$$

$$B^$$

$$\gamma = (54.8^{+6.0}_{-5.8}(\text{stat.})^{+0.6}_{-0.6}(\text{syst.})^{+6.7}_{-4.3}(\text{ext.}))^{\circ}$$

Second most precise single-channel determination!

γ combination

A combination of all LHCb y determinations (+ charm mixing and asymmetries)

B decay	D decay	Ref.	Dataset	
$B^{\pm} \to Dh^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	
$B^{\pm} \rightarrow Dh^{\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[30]	Run 1	
$B^{\pm} \to Dh^{\pm}$	$D \to K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}$	[18]	Run 1&2	
$B^{\pm} \rightarrow Dh^{\pm}$	$D ightarrow h^+ h^- \pi^0$	[19]	Run 1&2	
$B^{\pm} \to D h^{\pm}$	$D o K_{\rm S}^0 h^+ h^-$	[31]	Run 1&2	
$B^{\pm} \rightarrow D h^{\pm}$	$D o K_{ m S}^0 K^\pm \pi^\mp$	[32]	Run 1&2	
$B^{\pm} \rightarrow D^* h^{\pm}$	$D \rightarrow h^+h^-$	[29]	Run 1&2	
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+ h^-$	[33]	Run 1&2(*)	
$B^{\pm} \rightarrow DK^{*\pm}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[33]	Run 1&2(*)	
$B^{\pm} \rightarrow D h^{\pm} \pi^{+} \pi^{-}$	$D o h^+ h^-$	[34]	Run 1	
$B^0 o DK^{*0}$	$D o h^+ h^-$	[35]	Run 1&2(*)	
$B^0 \to DK^{*0}$	$D \rightarrow h^+\pi^-\pi^+\pi^-$	[35]	Run 1&2(*)	
$B^0 o DK^{*0}$	$D \rightarrow K_{\rm S}^0 \pi^+ \pi^-$	[36]	Run 1	
$B^0 \to D^\mp \pi^\pm$	$D^+ \rightarrow K^- \pi^+ \pi^+$	[37]	Run 1	
$B_s^0 \to D_s^{\mp} K^{\pm}$	$D_s^+ \rightarrow h^+ h^- \pi^+$	[38]	Run 1	
$B_s^0 \rightarrow D_s^{\mp} K^{\pm} \pi^+ \pi^-$	$D_s^+ ightarrow h^+ h^- \pi^+$	[39]	Run 1&2	
D decay	Observable(s)	Ref.	Dataset	

In agreement with previous and global determinations, statistically limited

Observation of CPV in charm with $\Delta \mathsf{A}_\mathsf{CP}$

- CPV in charm predicted small in SM O(10⁻⁴)
- Full Run 1 + Run 2 dataset, D* and semileptonic tag
- Observable is mainly sensitive to direct CPV

$$\Delta A_{CP} = A_{CP}(D^0 o K^+K^-) - A_{CP}(D^0 o \pi^+\pi^-)$$
 assuming universal a_{cp}^{ind}

$$\simeq \Delta a_{CP}^{dir} + rac{\Delta \langle t
angle}{ au_{D^0}} a_{CP}^{ind} \qquad \qquad \Delta \langle t
angle = \langle t
angle_{m{\kappa}m{\kappa}} - \langle t
angle_{\pi\pi}$$

- Experimentally robust as production and detection asymmetries cancel to first order
- Additional measurements are needed to have a better understanding!

$$\Delta a_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$$

CP violation observed at 5.3o!

Time-integrated *CP* asymmetry in $D^0 \rightarrow K^-K^+$ decays

Measuring time integrated asymmetries of single channels is much harder

$$A_{CP}(f) = \frac{\Gamma(M \to f) - \Gamma(\overline{M} \to \overline{f})}{\Gamma(M \to f) + \Gamma(\overline{M} \to \overline{f})} = \frac{1 - |\overline{A}_{\overline{f}}/A_f|^2}{1 + |\overline{A}_{\overline{f}}/A_f|^2}$$

 However the observable is the yield asymmetry, which must be corrected for to extract the physical asymmetry

$$A_{raw} = rac{N(D
ightarrow f) - N(ar{D}
ightarrow ar{f})}{N(D
ightarrow f) + N(ar{D}
ightarrow ar{f})} = A_{CP} + rac{A_P}{A_P} + A_D$$

 $\mathbf{A}_{\mathbf{p}}$ is the production asymmetry in pp collisions

 $\mathbf{A}_{\mathbf{D}}$ is the detection asymmetry due to the detector

 \bullet A_p and A_p have to be determined and corrected for using calibration samples

Time-integrated *CP* asymmetry in $D^0 \rightarrow K^-K^+$ decays

Measurement from LHCb using the full Run 2 dataset

Measurements statistically limited, exciting times for Charm CPV with ongoing and future upgrades

W boson mass measurement

- First LHCb measurement of W mass, 1.7 fb⁻¹ of 13 TeV data
- Anti-correlation in PDF uncertainties wrt ATLAS and CMS

Excellent prospects for a full Run2 analysis

Measurement of antiproton production

- Looks at p-He (SMOG) data in hyperon decays
- Measure proton-antiproton ratio from hyperon decays
- Extremely useful for the interpretation of results from space-based experiments
- Dominant Λ component measured exclusively

SMOG: System for Measuring Overlap with Gas

- Noble gas (He, Ne, Ar) injected into the LHC vacuum around the LHCb interaction region
- Energy between SPS and RHIC

Exotic hadrons, tetra/penta -quarks

arxiv:2210.10346

J/ψΛ structure at 4.338 GeV in B⁻→J/ψΛp⁻ decays

Consistent with a pentaquark candidate with strangeness

Full list and more plots at this <u>link</u>

The upgraded LHCb

- Aim to collect $^{\sim}50 \text{ fb}^{-1} \text{ at}$ roughly $\mathcal{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Keeping at least the same performance on Run 1&2

The upgrade DAQ and trigger

Fully software trigger, overcomes L0 rate limitations in Run1&2 and builds on the successes of Run1 and Run2 (e.g. real time alignment and calibration)

Installation and commissioning of the upgraded detector

First mass peaks!

Now working hard on understanding the new detector and improving calibration and alignment

no PID selection

Full model

 $D^0 \rightarrow K^-\pi^+$

Comb. bkg.

LHCb in Run 5&6 ?

- Target: ~300 fb⁻¹
- Pile-up: ~40
- 200 Tb/second data produced
- To keep the same performance in more difficult conditions, timing will be required in some sub-detectors
- A lot of R&D on new technologies
- Sub-detector TDRs expected after Run 3

LHCb-TDR-023

What could be achieved in Upgrade II?

Conclusions

- LHCb brought many interesting results in Run 1&2, with world leading measurements in the flavour sector
- LHCb showed capabilities that go well beyond its design (e.g. EW physics, heavy ions, etc..)
- I could only show a small fraction of its physics output!
- Now focused on Run3 to get the new detector in shape to acquire an even larger dataset (not just in size but also in physics reach!)
- We are also thinking at the far future and started R&D towards an even more capable detector!

Track types in LHCb

Trigger yield vs lumi in Run 1&2

Physics performance projections

Observable	Current LHCb		Upgrade I		Upgrade II
	(up to	9fb^{-1}	$(23{\rm fb}^{-1})$	$(50{\rm fb}^{-1})$	$(300{\rm fb}^{-1})$
CKM tests					
$\gamma \ (B o DK, \ etc.)$	4°	[9, 10]	1.5°	1°	0.35°
$\phi_s \; \left(B_s^0 o J/\psi \phi ight)$	$32\mathrm{mrag}$	d [8]	14 mrad	$10\mathrm{mrad}$	$4\mathrm{mrad}$
$ V_{ub} / V_{cb} \ (\Lambda_b^0 \to p\mu^-\overline{\nu}_\mu, \ etc.)$	6%	[29, 30]	3%	2%	1%
$a_{ m sl}^d \; (B^0 o D^- \mu^+ u_\mu)$	36×10^{-3}	$^{-4}[34]$	8×10^{-4}		
$a_{\rm sl}^s \; (B_s^0 o D_s^- \mu^+ u_\mu)$	33×10^{-3}	$^{-4}[35]$	10×10^{-4}	7×10^{-4}	3×10^{-4}
Charm					
$\Delta A_{CP} \ (D^0 \to K^+K^-, \pi^+\pi^-)$	29×10^{-3}	$^{-5}$ [5]		8×10^{-5}	3.3×10^{-5}
$A_{\Gamma} \ (D^0 o K^+K^-, \pi^+\pi^-)$	11×10^{-1}	$^{-5}$ [38]	5×10^{-5}	3.2×10^{-5}	1.2×10^{-5}
$\Delta x \ (D^0 \to K_{\rm S}^0 \pi^+ \pi^-)$	18×10^{-3}	$^{-5}$ [37]	6.3×10^{-5}	4.1×10^{-5}	1.6×10^{-5}
Rare Decays					
$\mathcal{B}(B^0 \to \mu^+ \mu^-)/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	⁻) 69%	[40, 41]	41%	27%	11%
$S_{\mu\mu} \ (B_s^0 o \mu^+\mu^-)$	8		_	_	0.2
$A_{\rm T}^{(2)} \ (B^0 \to K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016
$A_{\rm T}^{ m Im} \; (B^0 o K^{*0} e^+ e^-)$	0.10	[52]	0.060	0.043	0.016
$\mathcal{A}_{\phi\gamma}^{\tilde{\Delta}\Gamma}(B_s^0 \to \phi\gamma)$	$^{+0.41}_{-0.44}$	[51]	0.124	0.083	0.033
$S_{\phi\gamma}(B_s^0 \to \phi\gamma)$	0.32	[51]	0.093	0.062	0.025
$\alpha_{\gamma}(\Lambda_b^0 \to \Lambda \gamma)$	$^{+0.17}_{-0.29}$	[53]	0.148	0.097	0.038
Lepton Universality Tests					
$R_K (B^+ \to K^+ \ell^+ \ell^-)$	0.044	[12]	0.025	0.017	0.007
$R_{K^*} (B^0 \to K^{*0} \ell^+ \ell^-)$	0.12	[61]	0.034	0.022	0.009
$R(D^*) \ (B^0 o D^{*-} \ell^+ \nu_\ell)$	0.026	[62, 64]	0.007	0.005	0.002

LFU q^2 regions

 $low-q^2$ region: $0.1 < q^2 < 1.1 \,\mathrm{GeV}^2/c^4$ $1.1 < q^2 < 6.0 \,\mathrm{GeV}^2/c^4$ central- q^2 region: $6 < q^2 < 11 \,\text{GeV}^2/c^4$ electron J/ψ region: $|m(\ell^+\ell^-) - M_{J/\psi}^{PDG}| < 100 \,\text{MeV}/c^2$ muon J/ψ region: $11 < q^2 < 15 \,\text{GeV}^2/c^4$ electron $\psi(2S)$ region: $|m(\ell^+\ell^-) - M_{\psi(2S)}^{PDG}| < 100 \,\text{MeV}/c^2$ muon $\psi(2S)$ region:

Challenges in LFU tests: electrons and energy losses

Misidentified background in electron mode

◆ Simple backgrounds from double-misidentification can be isolated inverting PID criteria

(close to nominal selection) after full selection (i.e $K^{+,*0}h^+h^-$) on electron mode

- ◆ Similar structures (see <u>backup</u>) also for R_{K^*} , however unknown Dalitz for $K^{*0}h^+h^-$
- ◆ Single misidentification background as well, often unknown
- Developed a <u>new</u> inclusive data-driven treatment of misidentified background

Mass fit to rare mode electrons: simultaneous fit $R_{K,K^{*0}}$

