Latest results from new physics searches in MicroBooNE HEP2023

Luciano Arellano

on behalf of the MicroBooNE collaboration

Jan 12, 2023

Overview

The MicroBooNE experiment

Sterile neutrino oscillation

Heavy Neutral Leptons and Higgs Portal Scalars

Other MicroBooNE BSM searches

Overview

The MicroBooNE experiment

Sterile neutrino oscillation

Heavy Neutral Leptons and Higgs Portal Scalars

Other MicroBooNE BSM searches

The MicroBooNE experiment

Liquid argon time projection chamber (LArTPC)

Active volume 85 tonnes of liquid argon $2.6 \times 2.3 \times 10.4 \text{ m}^3$

Largest dataset of neutrino interactions in liquid argon (2015-2020)

175 collaborators from 37 institutions in 5 countries

MicroBooNE LArTPC technology

Scintillation and ionization signals used to produce bubble-chamber like images of events

3 planes of wires with 3mm pitch

Array of 32 PMTs for light readout

Excellent mm-scale spatial resolution

Excellent calorimetry and lowenergy reconstruction thresholds

LArTPC – event display

Powerful particle identification

Can reconstruct full 3D image from the wire planes (and scintillation flash)

Color is linked to deposited charge \rightarrow calorimetry

Phys. Rev. D 103, 052002

LArTPC – event display

Powerful particle identification

Can reconstruct full 3D image from the wire planes (and scintillation flash)

Color is linked to deposited charge \rightarrow calorimetry

Phys. Rev. D 103, 052002

LArTPC – event display

Powerful particle identification

Can reconstruct full 3D image from the wire planes (and scintillation flash)

Color is linked to deposited charge \rightarrow calorimetry

Phys. Rev. D 103, 052002

Electron/photon separation in LArTPCs

Electron/photon separation in LArTPCs

Photon initiated showers have distinct gap between interaction vertex and start of the shower, electrons do not.

Electron/photon separation in LArTPCs

Starting segment of photon initiated shower has double the deposited charge $(\gamma \to e^+e^-)$

BNB and NuMI neutrino beams

Aerial view of Fermilab, Batavia, Illinois, USA

Neutrino beam (on-axis)

Neutrinos from the Main Injector (NuMI) neutrino beam

13% of beam protons don't interact with the target.

They can produce kaons at the absorber (~100 m from MicroBooNE).

Overview

The MicroBooNE experiment

Sterile neutrino oscillation

Heavy Neutral Leptons and Higgs Portal Scalars

Other MicroBooNE BSM searches

MiniBooNE low-energy excess (LEE)

MiniBooNE (2002-2019) observed a LEE of electromagnetic events with 4.8σ significance.

As a Cherenkov detector MiniBooNE is unable to distinguish between electrons and photons.

HEP2023: Latest results from new physics in MicroBooNE

MicroBooNE search for the MiniBooNE low-energy excess

Searches using multiple topologies and reconstruction methods: Phys. Rev. Lett. 128, 241801 We found no evidence of a ν_e excess

3+1 light sterile search

Phys. Rev. Lett. 130, 011801

Full 3+1 search, extended 4x4 PMNS matrix, relevant elements $|U_{e4}|^2$, $|U_{\mu4}|^2$, $|U_{s4}|^2$, oscillation parameters Δm^2_{41} , $\sin^2\theta_{14}$, $\sin^2\theta_{$

Limiting factor is degeneracy on $\nu_{\rm e}$ disappearance and appearance, will be addressed using NuMI beam

HEP2023: Latest results from new physics in MicroBooNE

Overview

The MicroBooNE experiment

Sterile neutrino oscillation

Heavy Neutral Leptons and Higgs Portal Scalars

Other MicroBooNE BSM searches

Heavy Neutral Leptons (HNL)

Extension of the PMNS matrix $|U_{\alpha 4}|^2$ ($\alpha = e, \mu, \tau$)

Flavor eigenstates
$$\nu_{\alpha} = \sum U_{\alpha_i} \nu_i + U_{\alpha 4} N$$

We set $|U_{e4}|^2 = |U_{\tau 4}|^2 = 0$ and place limits on $|U_{u4}|^2$

Higgs Portal Scalars (HPS)

Portal between SM and dark sector via the Higgs

Neutral real singlet scalar boson mixes with Higgs boson with mixing angle θ

Dark scalar acquires coupling to SM fermions proportional to $\sin(\theta) \to \theta$

Further reading: Phys. Rev. D 100, 115039

Production via Kaon decay at rest in the NuMI absorber

$$m_k - m_\pi \simeq 354 \text{ MeV} \rightarrow \text{decays to } e^+e^-, \mu^+\mu^-, \pi^0\pi^0, \pi^+\pi^-$$

Latest HNL + HPS search (2022)

Searches for HNL and HPS from KDAR from NuMI absorber

HNL: BNB target $(2020) \rightarrow \text{NuMI absorber } (2022)$

Similar two-track topology \rightarrow similar selection strategy

Search strategy

- Simulate signal
 - HNL: 12 mass points $246 \le m_{\rm HNL} \le 385 \text{ MeV}$
 - HPS: 8 mass points $212 \le m_{HPS} \le 279 \text{ MeV}$
- After preselection, train separate BDTs for each sample using xgboost

A couple of selected background kinematics (for full set see next slide):

Backgrounds:

- Beam-off: detector triggered by cosmic ray
- In/Out-Cryo: neutrino interactions in/out of the detector

 $\beta = \mathrm{Angle} \ \mathrm{w.r.t.} \ \mathrm{absorber}$

Phys. Rev. D 106, 092006

Latest MicroBooNE LLP results: HNLs

Order of
magnitude
improvement
with respect
to previous
MicroBooNE
result

Latest MicroBooNE LLP results: HPS

Overview

The MicroBooNE experiment

Sterile neutrino oscillation

Heavy Neutral Leptons and Higgs Portal Scalars

Other MicroBooNE BSM searches

Other BSM: Millicharged particles (in progress)

Millicharged particles: feebly interacting LLPs with fractional charge

ArgoNeuT LArTPC performed such a search (on-axis with NuMI)

ArgoNeuT: Phys. Rev. Lett. 124, 131801

Isolated hits with argon electron in a straight line. Favors low-energy hits.

Other BSM (in progress)

Neutron-antineutron oscillations

MICROBOONE-NOTE-1113-PUB

Dark tridents MICROBOONE-NOTE-1118-PUB

More HNL and HPS decay channels as well. Stay tuned!

Summary

- Searched for 3+1 light sterile neutrinos leveraging our 2021 LEE results
 - Phys. Rev. Lett. 130, 011801
 - No evidence of sterile neutrino oscillations
 - Upcoming search combining BNB and NuMI will improve by breaking parameter degeneracy
- Shown latest results for a search of HNL and HPS
 - <u>Phys. Rev. D 106, 092006</u>
 - Expands upon previous results from 2020 and 2021
- LArTPCs capable of producing competitive results with complex signature topologies
- MicroBooNE has a rich BSM search program
 - Always something in the works!

HEP2023: Latest results from new physics in MicroBooNE

Backup

Short baseline anomalies

MicroBooNE search for the MiniBooNE low-energy excess

Searches using multiple topologies and reconstruction methods: <u>Phys. Rev. Lett. 128, 241801</u> We found no evidence of a ν_e excess

MicroBooNE data

orr HML and HDC regults use

New HNL and HPS results use NuMI runs 1 and 3 data (~50% of dataset)

MicroBooNE first HNL search (2020)

- Phys. Rev D 101, 052001
- First search of HNLs in LArTPCs
- Produced at **BNB target**, using 2.0×10^{20} POT
- Novel "late trigger" window
 - HNLs take longer than neutrinos to travel → effectively removed neutrino background
- Set limits for 260-385 MeV

MicroBooNE previous HPS search (2021)

- Phys. Rev. Lett. 127, 151803
- Produced at **NuMI absorber**, decays to e^+e^-
- First BSM e^+e^- search of any LArTPC
- One candidate event, consistent with background expectation

μBooNE

HEP2023: Latest results from new physics in MicroBooNE

35/35