CMS Overview

Andrey Korytov

on behalf of the CMS Collaboration

Outline

CMS 101

- Detector
- Going beyond the "nominal mandate"
- Upgrades for HL-LHC
- Luminosity: past, present, future

Hand-picked recent physics results

- Part I: Higgs boson
- Part II: beyond Higgs boson

CMS at glance

Solenoid: 3.8 T

Pixel Detector: $\sigma_{\rm IP} \sim 10 \ \mu m$

Silicon Strip Tracker: $\delta p_T/p_T \sim 1\%$

EM calorimeter: $\delta E_T/E_T \sim 0.5\%$

Hadron calorimeter: jet $\delta E_T/E_T \sim 10\%$

Muon System: standalone $\delta p_T/p_T \sim 10\%$

Trigger:

- Level 1 (calo+muon only): 100 kHz
- High-Level Trigger: 1 kHz

30 years since inception (Letter of Intent)

CMS: going beyond the "nominal mandate" (1)

Parked data

HLT rate:

- original design goal: 100 Hz, limited by anticipated DAQ bandwidth and disk space
- current rate: 1 kHz, limited by the computing power to reconstruct data as we take it

CMS can take data at higher rates, 2-4 kHz, with low trigger thresholds and "park" extra data for reconstruction during long shutdowns

In 2018, parked data was taken with low-p_T displaced-muon triggers (B $\rightarrow\mu$ decay tag) Recorded >10¹⁰ events with unbiased B's (20 times the entire BaBar B dataset)

Example of analysis:
$$R(K^*) = \frac{\mathcal{B}(B \to K^* \mu \mu)}{\mathcal{B}(B \to K^* ee)}$$
 (in progress, stay tuned)

Probe B

low-p_T displaced-muon trigger

 $(B\rightarrow \mu \text{ decay tag})$

CMS: going beyond the "nominal mandate" (2)

Scouting trigger datasets

Another way to take events with low-threshold triggers without breaking the DAQ bandwidth is to record events with limited amount of information

- discard all raw data information
- retain HLT-reconstructed objects and only those of interest
- event size ~1 kB (vs ~1 MB for a full event record)
- can have a few triggers running at > 1kHz
 while taking only a tiny fraction of the DAQ bandwidth

Scouting triggers in Run 2

- H_T>250 GeV (vs 900 for the nominal path)
- Dimuons with muon $p_T>3$ GeV (vs 17/8 for nominal path)

Examples of analyses:

- Search for $X \rightarrow jj$ in 0.6-1.6 TeV range [JHEP08(2018)130]
- Search for $X \to \mu\mu$ with masses 10-45 GeV [PRL 124 (2020) 131802] 1-10 GeV (in progress, stay tuned)

Dark photon ($Z_d \rightarrow \mu\mu$): limits on the mixing parameter ϵ

CMS: upgrades for HL-LHC

All upgraded subsystems will have enhanced capabilities

Luminosity reminders

Run 1

- 7 TeV (2011): ~5 fb⁻¹
- 8 TeV (2012): ~20 fb⁻¹

```
Run 2 (2015-2018): 13 TeV ~140 fb<sup>-1</sup>
```

```
Run 3 (2022-2025): 13.6 TeV ~300 fb<sup>-1</sup> triple statistics (from 140 to 440 fb<sup>-1</sup>)
```

```
HL-LHC (2029-2041): 14 TeV \sim 3000 fb<sup>-1</sup> \times 20 statistics (from 140 to 3000+ fb<sup>-1</sup>)
```

+ trigger/detector upgrades

Run 3 status

Energy: 13.6 TeV

2022 (start-up year): 38 fb⁻¹ (recorded, 92% efficiency)

2023 – 2025 (main period): 300 fb⁻¹ by 2025 (planned)

2023 (war realities): LHC running time has been cut from 20 to 13 weeks due to the energy crisis

New projection for Run 3 lumi: wait and see

Hand-picked recent physics results

Part I: Higgs boson

H(125) as a portal to BSM

The discovered Higgs boson:

In SM, the Higgs boson's mass is the only free parameter in the Higgs sector – must be measured

However:

- being a theoretically-problematic oddity (scalar)
- and given its profound role in the SM,
- Higgs boson just may turn out to be a unique portal to BSM unlike any other SM particle

CMS has a broad program of searches for BSM associated with the discovered H₁₂₅:

- are there small deviations in H₁₂₅ couplings to the SM particles?
- is it 100% pure CP-even scalar? is it truly point-like?
- are there BSM production modes? ($t \to qH, X \to HH$, abnormal non-resonant HH)
- are there BSM decay modes? (H width, H \rightarrow invisible, H $\rightarrow \ell\ell'$ (CLFV), H \rightarrow BSM particles)
- And, of course, are there more BSM spin-0 particles? (another scalar, pseudoscalar, H[±], H^{±±})

Higgs boson: mass

B component subtracted

 $extsf{H} o extsf{ZZ} o extsf{4}\ell$ and $extsf{H} o extsf{\gamma} extsf{\gamma}$ are workhorse channels

Run 1 + 2016 results: 125.38 ± 0.14 GeV PLB 805 (2020) 135425 still the most precise

 $H \rightarrow ZZ \rightarrow 4\ell$: 125.26 ± 0.20(stat) ± 0.08(syst) GeV JHEP11(2017)047

H $\rightarrow \gamma \gamma$: 125.78 ± 0.18(stat) ± 0.18(syst) GeV PLB 805 (2020) 135425

Statistical powers of the two channels are similar

Emerging challenge in $H \rightarrow \gamma \gamma$: syst. uncertainties become a limiting factor

Run 2: Results in 2023, expect precision <100 MeV

HL-LHC: Expected precision ~20 MeV

CMS PAS FTR-21/007 and 21/008

1500

Decay modes

	bb	ww	ττ	СС	ZZ	γγ	Ζγ	μμ	"hopeless": gg, qq, ee
SM Higgs	58%	21%	6.3%	2.9%	2.6%	0.23%	0.15%	0.022%	9%

In green: five well-established decay modes (>5 σ)

- They comprise ~90% of the total SM Higgs width.
- All event rates are compatible with the SM predictions
- The overall signal strength $\mu = 1.002 \pm 0.057$

Emerging challenge: experimental statistical uncertainties are becoming comparable to experimental systematics and theory uncertainness. E.g. the overall combined signal strength

$$\mu = 1.002 \pm 0.036(stat) \pm 0.029(exp) \pm 0.033 (theory)$$

In gray: three decay modes being searched for...

Search for $H \rightarrow \mu\mu$

SM: $B(H \rightarrow \mu\mu) \approx 0.02\%$

probing Higgs coupling to the second-generation fermions

Analysis:

- Two prompt muons
- ggF, VBF, and VH categories
- Look for a small blip in the dimuon invariant mass at $m_{\rm min} \sim 125~\text{GeV}$

Significance: 3.0 (evidence)

Signal strength: $\mu = 1.2 \pm 0.4$ (consistent with SM)

Assuming SM H, we need ~4 times more data to establish this decay mode with 5σ

Search for $H \rightarrow Z\gamma$

SM: $B(H \to Z\gamma)B(Z \to ee/\mu\mu) \approx 0.01\%$ loop-induced rare decay -> potentially sensitivity to BSM

Analysis:

- Two prompt leptons with $m_{\ell\ell} \sim m_Z$
- VBF, VH, and ttH categories + (ggF with $D_{kin}(\ell\ell\gamma)$)
- Look for a small blip in the dimuon invariant mass at $m_{\rho\rho} \sim 125 \text{ GeV}$

Significance: 2.7

Signal strength: $\mu = 2.4 \pm 0.9$

(an excess, but still well consistent with SM)

Assuming SM H, we need ~20 times more data to establish this decay mode with 5σ

Search for *H*→cc

SM: $B(H \rightarrow cc) \approx 3\%$ probing Higgs coupling to the second-generation fermions

Search mode:

V+H(cc), including high-p_T H (merged c-quark jets)

One needs to fight:

- V+jets, <u>huge</u> cross section (not picking in m(jj))
- VH, $H \rightarrow bb$ (20 times the $H \rightarrow cc$ rate!)
- Need a <u>two-sided</u> discriminant: q/g-jet vs c-jet vs b-jet
- Advanced ML/AI techniques are now being employed and provide significant improvements in such discrimination

95% CL limit: μ < 14 (7.6 expected) Signal strength: μ = 7.7 ± 3.7

Naively, one would need >100 times more data to see an evidence for this SM H decay with 3σ

"standard candle" $VZ,Z \rightarrow cc$

 $\mu = 1.0 \pm 0.2$

significance 5.7

Just out: search for high- p_T H(cc) CMS-HIG-21-012 (Nov 25, 2012) 95%CL limit: μ <47 (39 expected)

Established production modes

SM Higgs (σ =55.7 pb at 13 TeV)

gg	VBF	WH	ZH	ttH	tH	bbH
87.2%	6.8%	2.5%	1.6%	0.9%	0.2%	0.9%

In green are five well stablished production modes $(>5\sigma)$ All event rates are compatible with the SM predictions

Fit for couplings modifiers

Event rate for
$$ii \to H \to ff$$
: $\sigma_i \mathcal{B}^f = \frac{\sigma_i(\vec{\kappa})\Gamma^f(\vec{\kappa})}{\Gamma_H(\vec{\kappa})}$

Fit for six Higgs coupling modifiers: κ_{W} , κ_{Z} , κ_{t} , κ_{b} , κ_{τ} , κ_{u}

Assuming:

- no "new physics" in loop-driven couplings $(H \to \gamma \gamma, gg \to H)$
- no BSM decays (invisible, not observed)
- couplings to the 1st/2nd–gen. quarks and electrons are SM-like (i.e., small and hence having a negligible effect on the fit)

Impressive agreement with SM over **three orders of magnitude** of couplings

In SM, $\sigma(HH): \sigma(H) \sim 1:1000$

Three most sensitive decay modes:

- $HH \rightarrow (bb)(bb)$
- $HH \rightarrow (bb)(\tau\tau)$
- $HH \rightarrow (bb)(\gamma\gamma)$

Production modes tags:

- VBF
- untagged (ggF)

Results (95% CL limits)

- HH production signal strength μ < 3.4
- HHH coupling
- VVHH quartic coupling

 $-1.2 < \kappa_{\lambda} < 6.5$

Hand-picked recent physics results

Part II: Beyond Higgs boson

Signature: $tt \rightarrow (bjj) + b\ell\nu$

target events with top p_T>400 GeV

 one top decays hadronically and forms a "fat" jet with sub-structure (jet p_T>400 GeV)

 another top decays leptonically (due to boost, the lepton may not be isolated)

Final observable: "fat" jet mass (m_{iet})

Significant effort on reducing uncertainties on jet mass scale and jet energy scale – dominant experimental syst. uncertainties

$$m_{\rm t} = 172.76 \pm 0.81 \,\text{GeV}$$

= $172.76 \pm 0.22(stat) \pm 0.57(exp) \pm 0.48(model) \pm 0.24(theo) \,\text{GeV}$

First top quark mass measurement with the full Run 2 dataset (precision is improved by a factor of 3 w.r.t. the 2016 dataset analysis)

Measurements with the 2016 dataset:

dilepton: 172.33±0.73 GeV single lepton: 172.25±0.63 GeV all jets: 172.34±0.73 GeV

from abs. x-section: 172.33±0.70 GeV from diff. x-sections: 170.5±0.8 GeV

CMS PAS B2G-20-009 (Sep 30, 2022) [Run 2]

Motivation examples:

Graviton (J=2), W'/Z' (J=1), radion, heavy H (J=0)

Signature:

- SM bosons (W, Z, H) decay to qq pairs
- for $m_x > 1.3$ GeV, expect two "fat" jets (R=0.8)
- assume $\Gamma_X \ll m_{
 m JJ}$
- VBF production is also explored

Final discriminating observable:

 $3D(m_{JJ}, m_{J1}, m_{J2})$

 $V' \rightarrow VV+VH: m_{V'} > 4.8 \text{ TeV}$

Radion \rightarrow VV: $m_{V'} > 2.7 \text{ TeV}$

Graviton \rightarrow VV: $m_{V'} > 1.4 \text{ TeV}$

Max. excess at 2.9 TeV (local 3.6 σ , global 2.3 σ)

BSM: τ + MET

Motivation examples:

- new heavy gauge bosons (W')
- leptoquarks (LQ)
- with dominant coupling to third generation fermions

Signature: Hadronically decaying tau + MET

Final discriminating observable:

transverse mass m_™

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\tau_{\mathrm{h}}}p_{\mathrm{T}}^{\mathrm{miss}}[1-\cos\Delta\phi(\vec{p}_{\mathrm{T}}^{\tau_{\mathrm{h}}},\vec{p}_{\mathrm{T}}^{\mathrm{miss}})]}.$$

Compare:

e+MET: $m_{W'} > 5.4 \text{ TeV}$ μ +MET: $m_{W'} > 5.6 \text{ TeV}$ [JHEP 07 (2022) 067]

Limits in the context lefthanded LQ model:

Search sensitivity is just next to the blue best-fit region to explain "B decay anomalies"

BSM: SUSY $\tilde{ au}\tilde{ au} o au au + p_{\mathrm{T}}^{\mathrm{miss}}$

Motivation examples:

- SUSY resolves the hierarchy problem, gives a dark matter candidate
- and often favors 3rd generation sfermions to be the lightest

Signature:

- two hadronically decaying tau leptons + MET
- non-prompt (long-lived) $ilde{ au}'$ s are also explored

Final discriminating observables:

- sum of transverse masses: $\Sigma m_{\mathrm{T}} = m_{\mathrm{T}}(\tau_{\mathrm{h}}^{(1)}) + m_{\mathrm{T}}(\tau_{\mathrm{h}}^{(2)})$
 - "stransverse mass": $m_{\mathrm{T2}} = \min_{\vec{p}_{\mathrm{T}}^{\mathrm{X}(1)} + \vec{p}_{\mathrm{T}}^{\mathrm{X}(2)} = \vec{p}_{\mathrm{T}}^{\mathrm{miss}}} \left[\max\left(m_{\mathrm{T}}^{(1)}, m_{\mathrm{T}}^{(2)}\right) \right]$
- $p_T(\tau_1)$
- number of jets

31 signal region bins:

no significant excesses

Notoriously difficult regions with small mass differences, where SUSY/BSM can hide

(Dec 20, 2022) [Run 2]

Motivations:

- B→ μμ is highly suppressed in SM, which can make BSM-induced decays more visible

Analysis:

- Two muons, forming a common displaced vertex
- MVA to suppress backgrounds. Main bkgs:
 - muons from different heavy-flavor mesons
 - muons from B-meson cascade decays
 - $B \rightarrow K\pi$, $B_s \rightarrow KK$ (mis-id)

Examples of Feynman diagrams: black – SM particles red/green - BSM

Results:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left[4.02^{+0.40}_{-0.38} \text{(stat)} \, {}^{+0.28}_{-0.23} \text{(syst)} \, {}^{+0.18}_{-0.15} \, (\mathcal{B}) \right] \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 1.5 \times 10^{-10} \text{ at } 90\% \text{ CL}$

Both agree with the SM and are the most precise to date

Heavy lons with a twist: $\gamma\gamma \rightarrow \tau\tau$

CMS HIN-21-009 (Jun 10, 2022) [2015 dataset]

Motivations:

- measure cross section σ(γγ → ττ) and probe
 tau-leptons gyromagnetic ratio, a_τ = (g_τ − 2)/2
- note: $\sigma_{NN}(\gamma\gamma \to \tau\tau) \sim Z^4 \times \sigma_{pp}(\gamma\gamma \to \tau\tau)$

Analysis:

- 2015 dataset: Pb-Pb (Z=94), $\sqrt{\sigma_{NN}}=5.02$ TeV, $L=0.40~{
 m nb^{-1}}$
- ultraperipheral scattering (little activity in the CMS detector)
- τ_{μ} (muon) and τ_{h} (3-prong)

$$\sigma(\gamma\gamma \rightarrow \tau\tau) = 4.8 \pm 0.6(stat) \pm 0.5(syst) \mu b$$
, in agreement with SM

From this value: $a_{\tau} = 0.001^{+0.055}_{-0.089}$

SM prediction: $a_{\tau} = 0.00117721$ (5)

The best measurement so far (DELPHI): $a_{\tau} = -0.018 \pm 0.017$

[Run 3, 2022: 1.2 fb⁻¹]

Signal signature and analysis:

- Two OS leptons or one (ee, μμ, eμ, e, μ)
- Varying number of jets with 0/1/2 b-tags
- 40 signal region bins
- signal >> background in all bins
- main backgrounds are constraint from data

 $\sigma = 887 \pm 42 \ (stat + syst) \ \pm \ 53 \ (lumi) \ \mathsf{pb}$ in agreement with the SM

Summary

Exquisite measurements and BSM search results obtained with the Run 2 data keep coming

- I presented just a few hand-picked recently released results
- There are lots more out there, and many more to come https://cms-results-search.web.cern.ch

Run 3 has stated (13.6 TeV) and CMS takes data with high efficiency

- In 2022, collected data corresponds to 38 fb⁻¹ first results are already coming out
- Three more years to run with the goal to get 300 fb⁻¹ worth of data
- By then, statistical power of measurements/searches will be three times of what we show now

CMS upgrades are well underway for HL-LHC operation to start in six years

- A giant leap in the CMS data-taking capabilities
- And 3000 fb⁻¹ worth of data by 2041 (CMS will be half-century old by then)

Backup

Phys. Rev. D 105 (2022) 092007

Jan 27, 2022

[Run 2]

Motivation:

- BSM (Higgs as a portal to dark sector)
- in SM, $B(H \rightarrow ZZ \rightarrow 4\nu) \sim 0.001$

Analysis:

- Signature: MET + VBF-like jets
- Main backgrounds: $Z(\nu\nu)$ +jets, $W(\ell\nu)$ +jets

B(H→inv) < 0.18 at 95% CL (0.10 expected)

REINTEPRETATION

 $B(H \to \chi \chi) \Rightarrow \chi N \text{ scattering}$ cross section

Higgs boson's natural width

From the ratio of off-shell to on-shell rates using

 $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ [Run 2] and $H \rightarrow ZZ \rightarrow 4\ell$ [2016+2017]

And assuming:

- SM-like amplitude structure for $H \rightarrow ZZ$ decays
- No significant BSM physics in $gg \to H$ up to $m_{H^*} \sim 1$ TeV (fair, as otherwise we would probably already see it explicitly)

Nat. Phys. 18 (2022) 1329 Feb 14, 2022

 $\Gamma_{\!H}=3.2^{+2.4}_{-1.7}\,{
m MeV}$

First evidence for Higgs off-shell production with 3.6σ significance

From the combination of all on-shell decays

And assuming:

- SM-like amplitude structure for all Higgs coupling
- $|\kappa_{W}|$, $|\kappa_{Z}| \le 1$ (fair, as it is hard to build a self-consistent theory violating these conditions)
- Ad'l unknown partial width, making the total width a free par

 Γ/Γ_{SM}

Andrey Korytov (UF) HEP Conference, Valparaiso (Chile) — January 10, 2023

Search for *H*→*µµ*

	CMS [Run 2] JHEP 01 (2021) 148	ATLAS [Run 2] PLB 812 (2021) 135980
Significance	3.0	2.0
Signal strength (μ)	1.2 ± 0.4	1.2 ± 0.6

Evidence for the Higgs boson's coupling to the second generation fermions!

Need ~4 times more data to establish this SM H decay with 5σ

Search for $H \rightarrow Z\gamma$

Loop-induced decay in SM

SM: $B(H \rightarrow Z\gamma)B(Z \rightarrow ee/\mu\mu) \approx 0.01\%$

	CMS [Run 2] PAS HIG-19-014	ATLAS [Run 2] PLB 809 (2020) 135754
Significance	2.7	2.2
Signal strength (μ)	2.4 ± 0.9	2.0 ± 1.0

Need ~20 times more data to establish this SM H decay with 5σ

135

140

ttH - production mode established most recently

$ttH, H \rightarrow \gamma \gamma$

	CMS [Run 2] PRL 125 (2020) 061801	ATLAS [Run 2] PRL 125 (2020) 061802
Significance	6.6	5.2
Signal strength (μ)	1.38 ± 0.33	1.43 ± 0.37

ttH, $(H \rightarrow WW/ZZ/\tau\tau) \rightarrow leptons$

	CMS [Run 2] EPJC 81 (2021) 378	ATLAS [2016+2017] ATLAS-CONF-2019-045
Significance	4.7	1.8
Signal strength (μ)	0.92 ± 0.24	0.58 ± 0.26

Are H125's quantum J^{CP} numbers 0⁺⁺, as predicted by the SM ?

INTRO: Higgs bosonic (V) coupling structure

General Lagrangian for HVV interactions up to dim-5 operators:

$$L = \left| -\frac{a_1}{2v} m_V^2 H V_{\mu} V^{\mu} \right| - \frac{a_2}{2v} H F_{\mu\nu} F^{\mu\nu} - \frac{a_3}{2v} H F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{a_4}{2v} H V_{\mu} \square V^{\mu} + \frac{a_5}{2v} \square H V_{\mu} V^{\mu}$$

SM dim-3 operator

In SM: $a_1 = 2$ for ZZ, WW The term vanishes for $\gamma\gamma$ dim-5 operators: loop-induced (very small in SM) or, otherwise, non-renormalizable red factors with a_i/v are one of a conventions; they could've been written just as $1/\Lambda_i$

The a_2 term is CP-even. In SM, $a_2 \sim 0(10^{-2})$ [it is actually the lowest-order term for $H \to \gamma \gamma$] The a_3 term is the CP-odd term. In SM, $a_3 \sim 0(10^{-11})$ [arises from CP-violation in the quark sector] The a_4 term is is yet another CP-even distinct operator. In SM, $\sim 0(10^{-2})$

The a_5 term is experimentally <u>indistinguishable</u> from SM in <u>on-shell studies</u> (important for off-shell)

HVV couplings can be probed in $H \rightarrow VV$ decays and VH and VBF production modes: four-fermion kinematics is sensitive to the HVV coupling structure. This technique was used to establish π^0 parity in 1962: $\pi^0 \rightarrow \gamma^* \gamma^* \rightarrow (ee)(ee)$

When combining, HZZ and HWW processes, one has to assume how a_i^{ZZ} and a_i^{WW} are related to each other

Higgs bosonic (V) coupling structure

CMS: PRD 104 (2021) 052004 [Run 2]

$H \rightarrow ZZ \rightarrow 4I$

- On-shell analysis only
- WW and ZZ couplings a_i^{WW} and a_i^{ZZ} are related via custodial and SU(2)xSU(1) symmetries:
 - $a_1^{WW} = a_1^{ZZ}$
 - $a_2^{WW} = \cos^2 \theta_W \, a_2^{ZZ} + \cdots \, (negligible)$
 - $a_3^{WW} = \cos^2 \theta_W a_3^{ZZ} + \cdots$ (negligible)
 - ..
- Production modes: VBF tag, VH tag, untagged
- ME-based discriminants

68% CL:
$$a_3^{ZZ}/a_1^{ZZ} = 0.018^{+0.066}_{-0.034}$$
 (CP-odd admix)
$$a_2^{ZZ}/a_1^{ZZ} = -0.004^{+0.045}_{-0.058}$$

Coupling ratios are extracted from ratios f_{a3} and f_{a2} (Approach 2), given in the paper

gg-fusion selection

- red line: SM 0+

– blued line: 0[–]

INTRO: Higgs fermionic (f) coupling structure

General lowest-dim Lagrangian for Higgs-fermion interactions:

$$L = -\frac{m_f}{v} \bar{\psi}_f (\kappa_f + i \tilde{k}_f \gamma_5) \psi_f H$$

$$\kappa_f$$
 term is CP-even

$$\tilde{k}_f$$
 term is CP-odd

both are tree-level (unlike HVV)

Define mixing angle ϕ , where $\tan \alpha = \frac{\bar{k}_f}{\kappa_f}$

- pure CP-even state: $\alpha = 0^{\circ}$
- pure CP-odd state: $\alpha = 90^{\circ}$

SM:
$$\kappa_f = 1$$
, $\widetilde{k}_f = 0$; hence, $\alpha = 0$

MSSM: $\alpha \approx 0$

nMSSM: α can be large

Higgs CP-odd admixture: ttH

Final states used:

$$pp \to tt \mathbf{H} \to (jjb)(jjb)(\gamma \gamma)$$
 [all-hadronic]
 $pp \to tt \mathbf{H} \to (lvb)(jjb)(\gamma \gamma)$ [semi-leptonic]

Building an analytic ME-based discriminant that would account for jet mis-measurements (plus missing neutrino in semi-leptonic channe is challenging...

Instead, a BDT-based discriminant is built using CP-even and CP-odd MC models

	CMS [Run 2] PRL 125 (2020) 061801 (γγ) CMS PAS HIG-21-006 (Mar 2022): γγ+ZZ+multileptons	ATLAS [Run 2] PRL 125 (2020) 061802 ($\gamma\gamma$)
Purely CP-odd Htt coupling is disfavored at	3.7σ	3.9σ
95% CL limit on α	$ \alpha < 60^{\circ}$	$ \alpha < 43^{\circ}$

Final states used: $\tau_{\mu}\tau_{h}$ and $\tau_{h}\tau_{h}$

$$\tau_{\mu} \to \mu^{\pm} \nu \nu (17\%)
\tau_{h} \to \pi^{\pm} \nu (12\%)
\to \rho^{\pm} \nu \to \pi^{\pm} \pi^{0} \nu (26\%)
\to a_{1}^{\pm} \nu \to \pi^{\pm} \pi^{0} \pi^{0} \nu (10\%)
\to a_{1}^{\pm} \nu \to \pi^{\pm} \pi^{\pm} \pi^{\mp} \nu (10\%)$$

Signal (H) vs Bkg BDT enhances the signal VBF contribution with two forward-backward jets

Building a ME-based discriminants that would account for jet mis-measurements and missing neutrinos is possible, but challenging...

Distributions of angles between planes set by observable particles from decaying tau leptons ($\phi_{\rm CP}$) are sensitive to CP-admixture phase α

$\phi_{ extsf{CP}}$ angle for

$$H \to \tau_h \tau_h \to (\rho^+ \nu)(\rho^- \nu) \to \pi^+ \pi^0 \pi^- \pi^0 \nu \nu$$

Pure CP-odd H $\tau\tau$ coupling is disfavored at **3.2** σ 95% CL limit on α : $|\alpha| < 36^{\circ}$

Looking for explicitly abnormal decay/production modes of the H125 boson

Search for CLFV decays: $H \rightarrow \mu \tau$

CMS: PRD 104 (2021) 032013 [Run 2]

Channels used: $\mu \tau_h$, $\mu \tau_e$

Very similar to the "nominal" $H \rightarrow \tau \tau$ analysis, except that **muons**

- are prompt
- tend to have larger momenta

BDT is used to separate signal from non-Higgs bkg and $H \to \tau\tau$

B(H $\rightarrow \mu \tau$) < 0.15%

Limits on off-diagonal Yukawa couplings Y_{µt}

Search for H125 $\rightarrow XX \rightarrow (\ell\ell)(\ell\ell)$

CMS: arXiv:2111.01299 [Run 2]
ATLAS: arXiv:2110.13673 {Run 2]

Search for low-mass dilepton resonances in H125 decays

model independent limits on $\sigma \times \mathcal{B}$

Search for H125 → invisible

ATALS: arxiv2202.07953 [Run 2] CMS: arxiv2201.11585 [Run 2]

In SM: $B(H \rightarrow ZZ \rightarrow 4\nu) \sim 0.001$

VBF jets + MET

ATLAS: B($H\rightarrow inv$) < 0.15 at 95% CL (expected 0.10)

CMS: $B(H\rightarrow inv) < 0.18$ at 95% CL (expected 0.10)

m_{WIMP} [GeV]

Search for HH production (non-resonant)

Decay modes:

- $HH \rightarrow (bb)(bb)$
- $HH \rightarrow (bb)(\gamma\gamma)$
- HH \rightarrow $(bb)(\tau\tau)$

Production modes tags:

- VBF
- untagged (ggF)

	CMS arXiv: <mark>2202</mark> .09617 [Run 2] JHEP 03 (2021) 257[Run 2]	ATLAS arXiv: <mark>2112</mark> .11876 [Run 2] JHEP 07 (2020) 108 [Run 2] ATLAS-CONF- <mark>2021</mark> -052 [Run 2]
HH production signal strength (excluded at 95% CL)	3.9	3.1
Higgs self-coupling (allowed range at 95% CL)	$-2.3 < \kappa_{\lambda} < 9.4$	$-1.0 < \kappa_{\lambda} < 6.6$
VVHH quartic coupling (allowed range at 95% CL)	$-0.1 < \kappa_{2V} < 2.2$	$-0.4 < \kappa_{2V} < 2.6$