Contribution ID: 239

Overview of ATLAS Upgrades projects for HL-LHC

With the restart of the proton-proton collision program in 2022 (Run-3) at the Large Hadron Collider (LHC), the ATLAS detector aims to double the integrated luminosity accumulated during the ten previous years of operation. After this data-taking period the LHC will undergo an ambitious upgrade program to be able to deliver an instantaneous luminosity of 7.5×10^{34} cm⁻² s⁻¹, allowing the collection of more than 3 ab⁻¹ of data at $\sqrt{s} = 14$ TeV. This unprecedented data sample will allow ATLAS to perform several precision measurements to constrain the Standard Model Theory (SM) in yet unexplored phase-spaces, in particular in the Higgs sector, a phase-space only accessible at the LHC. To benefit from such a rich data-sample it is fundamental to upgrade the detector to cope with the challenging experimental conditions that include huge levels of radiation and pile-up events. The ATLAS upgrade comprises a completely new all-silicon tracker with extended rapidity coverage that will replace the current inner tracker detector; a redesigned trigger and data acquisition system for the calorimeters and muon systems allowing the implementation

of a free-running readout system. Finally, a new subsystem called High Granularity Timing Detector, will aid the track-vertex association in the forward region by incorporating timing information into the reconstructed tracks. A final ingredient, relevant to almost all measurements, is a precise determination of the delivered luminosity with systematic uncertainties below the percent level. This challenging task will be achieved by collecting the information from several detector systems using different and complementary techniques. This presentation will describe the ongoing ATLAS detector upgrade status and the main results obtained with the prototypes, giving a synthetic, yet global, view of the whole upgrade project.

Author: LISBOA LEITE, Marco (Universidade de Sao Paulo (BR))

Presenter: LISBOA LEITE, Marco (Universidade de Sao Paulo (BR))