

Introduction

- Discovery of a neutral scalar particle of a mass 125 GeV at the LHC confirmed the predicted electroweak symmetry breaking mechanism of the SM
- Experimental results are consistent with the SM Higgs Boson
- ► The discovery has completed the SM particle content
- Some questions remained open:
 - -Dark Matter
 - -Neutrino oscillations/Neutrino masses
 - —Hierarchy/Naturalness problem
 - Matter-antimatter asymmetry
- Can be addressed in some BSM scenarios that extend the Higgs sector
- Various BSM models predict additional Higgs bosons:
 - Additional EW singlet: h,H
 - ▶ Two Higgs doublet model (2HDM): h,H,A,H^{\pm}
 - ► Two Higgs doublet + singlet Model (2HDM+a)
 - ▶ Higgs triplet models (SM +triplet): $H^{\pm\pm}$, etc.

• ...

These results will be shown today, the rest are in backup

New scalar/pseudoscalar:

 $X \rightarrow \gamma \gamma$ (low mass) \star

 $X \rightarrow \gamma \gamma$ (high mass) \bigstar

 $t\bar{t}H/t\bar{t}A \rightarrow 4t \bigstar$

g2HDM H in multilepton, multi-b

 $t \to qX, X \to b\bar{b}, q = u, c \bigstar$

Exotic decays:

 $H o ilde{\chi}_{1}^{0} ilde{\chi}_{2}^{0} o a ilde{\chi}_{1}^{0} ilde{\chi}_{2}^{0}, a o b ar{b}$ $H o Z_{d} Z_{d} o 4l, H o Z Z_{d} o 4l$ $H o aa o b ar{b} \mu \mu$

Charged Higgs:

 $t \to H^{\pm}, H^{\pm} \to cb \bigstar$ $H^{\pm} \to W^{\pm}A, A \to \mu\mu$ $H^{\pm\pm}H^{\mp\mp} \to 4l \bigstar$

High and Low mass searches with $X \to \gamma \gamma$

Light Neutral Higgs: $X \rightarrow \gamma \gamma$

NEW!

- Search for a light axion-like particle (ALP) X, coupling to gluons in $\gamma\gamma$ spectrum in mass range [10-70] GeV
- \blacktriangleright 2 isolated photons with $E_T^{\gamma} > 22$ GeV and $p_T^{\gamma\gamma} > 50$ GeV
- ▶ Template fit to $m_{\gamma\gamma}$ distribution
- **Exclusion limits set on** $\sigma \times B(X \to \gamma \gamma)$
- Largest excess at 19.4 GeV with 3.1σ (1.5 σ) local (global) significance
- Problem Results interpreted as limits in the plane spanned by ALP mass (m_a) and decay constant (f_a)
- Covers previously unexplored phase space!

Background-only fit

Generic NW signal at 0.4 TeV

Generic NW signal at 1 TeV Generic NW signal at 2 TeV

m_{γγ} [GeV]

√s=13 TeV, 139 fb

Entries / 10⁴

ATLAS

 $\Gamma_{\rm X}/\,{\rm m_X}\,[\%]$

Heavy Neutral Higgs: $X \rightarrow \gamma \gamma$

- Search for a heavy scalar X in $\gamma\gamma$ final state
- ▶ 2 isolated photons with $m_{\gamma\gamma} > 150 \text{ GeV}$
- ▶ Template fit to $m_{\gamma\gamma}$ distribution
- Exclusion limits set on $\sigma \times B(X \to \gamma \gamma)$
- Largest excess at 684 GeV with 3.29σ (1.30 σ) local (global) significance
- Limits are provided in 2D plane of width (coupling) vs mass for spin-0 (spin-2) models
- ► Randal-Sundrum 1 model excluded for graviton masses m_{G^*} < 2.2, 3.9, 4.5 TeV with couplings

m_x [GeV]

Neutral Higgs in more complex systems

Heavy Neutral Higgs: $t\bar{t}H/t\bar{t}A \rightarrow 4t$

- Search for heavy additional neutral Higgs-like scalar and pseudoscalar in 4 top processes in mass range [0.4, 1] TeV
- Avoids large negative interference from SM $t\bar{t}$
- ▶ Dominant decay of H/A is $gg \rightarrow t\bar{t}$
- Only multi-lepton events are selected (2 same sign or ≥ 3 leptons) with at least 6 jets and at least 2b-tagged jets, $H_T > 500$ GeV
- Trained 2 BDTs: a) to separate the SM 4t production from other SM backgrounds (SM BDT) and b) to separate signal from SM 4t (BSM pBDT)
- Simultaneous binned likelihood fit over various discriminating variables in CRs and SRs
- Results are interpreted in Type-II 2HDM
- Limits on $\sigma \times BR$ (with $m_H = m_A$) and translated to limits on $\tan \beta$

0.2 0.3 0.4 0.5 0.6

g2HDM H in multi-leptons, multi-b-jets FS ATLAS-CONF-2022-039

- Search for a new heavy scalar with Flavour-violating decays in g2HDM
- First to target BSM production leading to 3 top and the first to probe g2HDM
- Consider tt, tc & tu couplings only
- Final states containing 2,3 or 4 top quarks
- Multi-leptons channel (2LSS, 3L, ≥4L)
- \geq 2 jets, with \geq 1 or \geq 2 b-tagged
- Signal regions based on lepton multiplicities, total lepton charge and multioutput DNN^{cat} classifier output (17 SR)
- ullet DNN^{cat} is trained to identify each of the 5 possible production modes (in 2LSS,3L) $_q$

g2HDM H in multi-leptons, multi-b-jets FS ATLAS-CONF-2022-039

- Search for a new heavy scalar with Flavour-violating decays in g2HDM
- First to target BSM production leading to 3 top and the first to probe g2HDM
- Consider tt, tc & tu couplings only
- Final states containing 2,3 or 4 top quarks
- ► Multi-leptons channel (2LSS, 3L, ≥4L)
- \geq 2 jets, with \geq 1 or \geq 2 b-tagged
- Signal regions based on lepton multiplicities, total lepton charge and multiplicities output DNN^{cat} classifier output (17 SR)
- ullet DNN^{cat} is trained to identify each of the 5 possible production modes (in 2LSS,3L) $^{\circ}$
- lacktriangle Another DNN^{SB} is used to discriminate signal from background in each SR
- Upper limits on the m_H and couplings ho are estimated
- 2.81 σ local significance at 1TeV and $(\rho_{tt}, \rho_{tc}, \rho_{tu})$ = (0.32,0.05,0.85)

- Search for a flavour-changing neutral currents in top quark decays $t \to qX, \, X \to b\bar{b}$, with X being a light scalar, in mass range [20,160] GeV
- ► Search for exactly 1*l*, at least 4-jets including at least 3 b-tagged
- Six analysis regions based on number of jets and b-jets
- Signal discrimination using mass parametrised DNN trained on jet, lepton and b-tagging information (training is done for $t \to uX$ and $t \to cX$ separately)
- Profile likelihood fit on NN score across SRs and CRs is performed
- ▶ Upper limits set on $B(t \rightarrow qX)$, excluding values larger than 0.08%
- Results are consistent with SM

Charged Higgs

Charged Higgs: $t \to H^{\pm}b$, $H^{\pm} \to cb$

- Search for a charged Higgs in jets + lepton final state in $t\bar{t}$ events in mass range [60,160] GeV
- ▶ High multiplicity of jets (\geq 4) with b-jets (\geq 3) and 1 lepton
- 6 analysis regions based on number of jets and b-jets
- Mass parametrised NN classifier is used to discriminate single from background (use kinematic information from jets, leptons and E_T^{miss})
- ▶ Upper limits set on $BR(t \to H^{\pm}b) \times BR(H^{\pm} \to cb)$
- Improves previous LHC result by factor x5
- ▶ Observed local significance of 3σ at 130 GeV (1.6 σ global)
- Broad excess is consistent with the expected mass resolution

Data / Pred

Charged Higgs: $H^{\pm\pm}H^{\mp\mp}$

- Search for a pair production of double charged Higgs with $H^{\pm\pm} \to l^{\pm}l^{\pm}$ and $l=e,\mu,\tau$ in mass range [400,1300] GeV
- Predicted by Left-right symmetric models, Type-II seesaw models and sensitive to a lepton-violation scenarios
- Signal regions are separated by lepton multiplicities (2L,3L,4L)
- $m_{l^{\pm}l^{\pm}}$ is used as a discriminant in 2L and 3L regions; total yield in 4L regions
- Limits set on total production cross section, assuming democratic decays to lepton flavours
- Doubly charged Higgs excluded for masses below 1080 GeV

Conclusions

- New scalar particles are key experimental signatures for many extensions of the Standard Model
- Broad comprehensive programme targeting signatures of new scalars, pseudo-scalars and beyond the Standard Model Higgs decays is ongoing
- Results in general consistent with SM expectations (few local excesses are observed and it is worthwhile to pay attention to them)
- Looking forward to Run 3 results!

ATLAS-PHYS-PUB-2022-043

New scalar/pseudoscalar:

 $X \rightarrow \gamma \gamma$ (low mass) $X \rightarrow \gamma \gamma$ (high mass) $t\bar{t}H/t\bar{t}A \rightarrow 4t$ g2HDM H in multilepton, multi-b $t \rightarrow qX, X \rightarrow b\bar{b}, q = u, c$

Exotic decays:

 $H o \tilde{\chi}_1^0 \tilde{\chi}_2^0 o a \tilde{\chi}_1^0 \tilde{\chi}_2^0, a o b \bar{b}$ $H o Z_d Z_d o 4l, H o Z Z_d o 4l$ $H o aa o b \bar{b} \mu \mu$

Charged Higgs: 🛨

 $t \to H^{\pm}, H^{\pm} \to cb$ $H^{\pm} \to W^{\pm}A, A \to \mu\mu$

Thank you!

Backup slides

Heavy Neutral Higgs: $X \rightarrow \gamma \gamma$

- Search for a heavy scalar X in $\gamma\gamma$ final state
- ▶ 2 isolated photons with $m_{\gamma\gamma} > 150$ GeV
- ▶ Template fit to $m_{\gamma\gamma}$ distribution
- **Exclusion limits set on** $\sigma \times B(X \to \gamma \gamma)$
- Largest excess at 684 GeV with 3.29σ (1.30 σ) local (global) significance
- Limits are provided in 2D plane of width (coupling) vs mass for spin-0 (spin-2) models
- Pandal-Sundrum 1 model excluded for graviton masses $m_{G^*} < 2.2,\ 3.9,\ 4.5$ TeV with couplings $k/\bar{M}_{Pl} = 0.01,\ 0.05,\ 0.1$

spin-0

- Signal shape modelled by double-sided Crystal Ball
- Background shape is modelled by analytical function
- ► More complex fit around the turn-on region at 20 Gev

Heavy Neutral Higgs: $t\bar{t}H/t\bar{t}A \rightarrow 4t$

- Search for heavy additional neutral Higgs-like scalar and pseudoscalar in 4 top processes in mass range [0.4, 1] TeV
- Avoids large negative interference from SM $t\bar{t}$
- ▶ Dominant decay of H/A is $gg \rightarrow t\bar{t}$
- ▶ Only multi-lepton events are selected (2 same sign or ≥ 3 leptons) with at least 6 jets and at least 2b-tagged jets, $H_T > 500$ GeV
- Trained 2 BDTs: a) to separate the SM 4t production from other SM backgrounds (SM BDT) and b) to separate signal from SM 4t (BSM pBDT)
- Simultaneous binned likelihood fit over various discriminating variables in CRs and SRs
- Results are interpreted in Type-II 2HDM
- Limits on $\sigma \times BR$ (with $m_H = m_A$) and translated to limits on $\tan \beta$

Exotic decays: $H o \chi_1 \chi_2$, $\chi_2 o a \chi_1$, $a o b \bar{b}$ JHEP 01 (2022)063

- Search for a cascade $H \to \tilde{\chi}_1^0 \tilde{\chi}_2^0 \to a \tilde{\chi}_1^0 \tilde{\chi}_2^0, \ a \to b \bar{b}$ Higgs from ZH production
- \blacktriangleright NMSSM scenario: $\tilde{\chi}^0_1$ and $\tilde{\chi}^0_2$ light neutralinos, a light scalar
- ▶ Select on $Z \rightarrow ll$ to reduce backgrounds, 2jets + high MET
- Model of background distribution constructed from fits on Control region

- lacktriangle Limits via fits of signal distribution and background model to m_{jj}
- Results are consistent with SM

Exotic decays: $H ightarrow Z_d Z_d ightarrow 4l, \ H ightarrow Z Z_d ightarrow 4l$ JHEP 03 (2022)041

ightharpoonup Search for ggF-produced Higgs boson decay to one or two BSM vector bosons in 4l final state

Searches in High mass Z_dZ_d (HM 4l): 15-60 GeV, Low mass Z_dZ_d (LM 4μ): 1-15 GeV and Single Z_d (4l): 15-55 GeV

▶ Template fits to $< m_{ll} > = \frac{1}{2}(m_{12} + m_{34})$ or m_{34}

Small access of 2.5σ local at 28 GeV is observed

ATLAS

Exotic decays: $H \rightarrow aa \rightarrow bb\mu\mu$

- $H \rightarrow aa \rightarrow \mu\mu bb$ in gluon-gluon fusion production
- ▶ $a \to bb$ has large BR and $a \to \mu^+\mu^-$ is clean decay mode
- ▶ Choose 2μ , 2 b-tagged jets in mass range 15 GeV < $m_{\mu\mu}$ < 65 GeV
 - and $m_{\mu\mu bb}$ < 140 GeV
- Train BDT to improve signal selection
- Fit $m_{\mu\mu}$

10

10⁻³

ATLAS

20

 \sqrt{s} = 13 TeV, 139 fb⁻¹

30

40

m_a [GeV]

50

60

Local p_o-value

▶ 3.3 σ local significance is observed (with 1.7 σ global)

Charged Higgs: $H^{\pm} \rightarrow W^{\pm}A$, $A \rightarrow \mu\mu$

- Search for a charged Higgs Boson decaying to a pseudo scalar A and a W produced in association with a top quark
- $\blacktriangleright \mu \mu e$ final state is easy to reconstruct
- A signal has at least 3 jets (1b-tagged) with one electron and two muons
- Search is performed in mass range 15-75 GeV
- Upper limits are computed as a function of m_A for various m_{H^\pm} hypotheses
- First lower limits on $tan\beta$ for a 2HDM type-I model

