

Searches for BSM physics using challenging and long-lived signatures with the ATLAS detector

Overview

- What are long-lived particles and what generates larger lifetimes?
- Why are searches for long-lived particles difficult?
- 5 intriguing analysis results on full Run2 data

Long-lived particles in SM

$$\pi^{+} \to \mu^{+} + \nu_{\mu}$$

$$\cdot \frac{1}{\tau_{\pi^{+}}} = \Gamma_{\pi^{+}} \approx g_{W}^{2} (\frac{m_{\pi^{+}}}{m_{W}})^{4} m_{\pi}$$

- small decay width -> large lifetime
- helicity suppressed decay -> smaller phase space
- off-shell, virtual W -> large m_W

Long-lived particles in BSM

• fewer possible decay modes
$$\tau = \frac{1}{\sum_{decay\ modes} \Gamma_{decay\ mode}}$$

- small coupling constants
- off-shell mediator
- less phase space (suppression, small mass-splitting)

$$\Gamma_{decay\ mode} \propto \frac{|\overrightarrow{p}|}{m_X} |M|^2 \propto \frac{\sqrt{(m_X^2 - m_a^2)^2 + (m_X^2 - m_b^2)^2 - m_X^4 - 2m_a^2 m_b^2}}{m_X^2} |M|^2$$

$$\Gamma_{decay\ mode} \propto |M|^2 \longrightarrow M \propto g$$

Long-lived particles in ATLAS What makes these searches difficult?

- ATLAS was designed to detect particles and their decays that originate from interaction point
 - SM LLPs have well understood experimental signatures
- BSM LLPs have unusual signatures
 - excellent prospects for discovery
 - standard reconstruction algorithms may reject the events
 - atypical signatures resemble noise, pile-up, mis-reconstruction
- the rarity of such mis-reconstruction, MC simulations may not accurately model backgrounds
- Solution:
 - use innovative trigger strategies
 - custom reconstruction
 - ML for background elimination
 - fully data-driven background estimation techniques

Displaced vertex + jets

CONF note

Analysis overview and Run2 improvements

- benchmark models are SUSY scenarios:
 - neutralino $\tilde{\chi}^0$ decaying via small RPV coupling to three SM quarks
 - production via gluinos $ilde{g}$ that each promptly decay to two SM quarks and $ilde{\chi}^0$
- no SM processes that produce high-pT jets and a massive, multi-track displaced vertex
- background sources:
 - hadronic interactions in detector material
 - accidental crossings
 - merged vertices
- previous searches required different signatures with the displaced vertex
- previous searches required two displaced vertices
- improvement in the vertex finding algorithm and bkg. estimation

Event selection

- one displaced vertex and jets, no requirement for them to be linked
- LRT is computationally expensive
- two filters: trackless jet and high-pT jet

Signal regions

High-pT SR

- pass high-pT jet selection
- at least one DV passing full DV selection

Trackless SR

- pass trackless jet selection
- fail high-pT jet selection
- at least one DV passing full DV selection

Background estimation

- fully inclusive data driven bkg. estimate
- relies on assumption that in a multijet final state, DV production is correlated to presence of jets
- done in two steps:
 - 1. calculate probability of a SR-like DV is produced in proximity to a jet using track jets in CRs
 - 2. apply probability to track jets in events passing event-level SR selection

Results

- observation consistent with the background-only hypothesis
- exclusion limits derived for several R-parity-violating SUSY models with long-lived neutralinos

Non-pointing and delayed photons

Non-resonant [paper]

Resonant [CONF Note]

Analysis overview and Run2 improvements

Non-resonant

- benchmark model is a SUSY scenario:
 - SM higgs decay to NLSP which decays to LSP and photon
 - associate production of SM Higgs with W,Z or top-antitop system
- NLSP lifetime is a free parameter
- associate production due to E_T^{photon}, E_T^{miss} not large enough for triggering

- background sources:
 - real prompt photons
 - fake photons (electrons or jets faking photons)

Resonant

- benchmark models is a SUSY scenarios:
 - pair production of SM EW SUSY partners
 - each decaying to to NLSP and SM particle
 - NLSP decaying via $\tilde{\chi_1^0} \to H/Z + \tilde{G} \to \gamma\gamma/ee + \tilde{G}$
- weak coupling of NLSP to the gravitino LSP
- no SM process produces a displaced diphoton vertex with significant invariant mass

- previous Run1 searches focused on prompt photons
- previous Run1 search focused on VBF production
- no previous ATLAS search with this exact signal

- no previous ATLAS search with this exact signal
- previous searches without vertex requirements

- measuring the centroids of the EM shower in first and second EM calo layers

Non-resonant

Timing measurement

 arrival time of EM objects measured using secondlayer EM calo cell with largest eng. deposit

- 1photon and 2photon channels
- likelihood fit is performed over timing distribution in non-overlapping categories of $|\Delta z_{\gamma}|$

Pointing measurement

 intersection of the two photon paths determined by pointing defines the location of reconstructed secondary vertex

Resonant

•
$$t_{avg} = (t_{\gamma_1} - t_{\gamma_2})/2$$

• likelihood fit is performed over t_{avg} distribution in non-overlapping categories of ρ , where $\rho = \sqrt{v_r^2 + v_z^2}$

Results

no significant excess over the expected background

Non-resonant

$45 = m_{NLSP} = 60 \text{ GeV}$ m_{LSP} [GeV] m_{LSP} [GeV] **ATLAS** √s = 13 TeV, 139 fb⁻¹ **ATLAS** √s = 13 TeV, 139 fb $m_{NLSP} = 50 \text{ GeV}$ ExpectedObserved Expected Observed 35 25 30 25 20 20 15 15 10 10² τ [ns] 0.3 0.3 10 10 m_{LSP} [GeV] **ATLAS ATLAS** Expected $35 \vdash \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $35 \vdash \sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ — Observed High- Δm selection High- Δm selection $30 \vdash \tau = 2 \text{ ns}$ $30 \vdash \tau = 10 \text{ ns}$ 25 📙 20 🗀 20 🗄 15 🗁 15 10 10 5 35 40 45 50 55 40 45 50 35 m_{NLSP} [GeV] m_{NLSP} [GeV]

Resonant

Displaced collimated pairs of leptons or light hadrons

paper

hDPJ

Analysis overview and Run2 improvements

- dark sector weakly coupled to SM via vector portal
- dark photon mixes with SM photon and decays to SM leptons and light quarks;

$$\tau \propto (\frac{10^{-4}}{\epsilon})^{2} (\frac{100 \ MeV}{m_{\gamma_{d}}})^{2} [s]$$

$$\epsilon < 10^{-5}, MeV < m_{\gamma_{d}} < 15 \ GeV$$

- using ML techniques to reject majority of background processes
- outstanding background contributions are estimated using ABCD method

- overcoming the bottleneck of trigger selection
- considering an additional Higgs production mode: WH, making use of more efficient standard triggers
- making use of multi-muon and two dedicated LLP search triggers: Narrow-scan and CalRatio

Object definitions

μDPJ

- decays beyond the last pixel layer
- two or more collimated stand-alone MS tracks
- reconstructed using a clustering alg. seeded by highest pT muon
- main background source are cosmic-ray muons
- discriminated using DNN trained on cosmic dataset and MC

hDPJ

- jet with low EM fraction
- main background sources are rare QCD processes, cosmic rays and beam induced background
- discriminated using
 - cuts: tile gap ratio, timing cut, jet width, jet vertex tagger
 - QCD rejection using CNN trained on signal and QCD MC
 - BIB rejection using CNN trained on collision BIB dataset and signal MC

ggF

WH

- trigger: NarrowScan, CalRatio, $3\mu6$ msOnly
- veto mJJ > 1 TeV and MET > 225 GeV
- signal lepton veto

- 2μDPJ
- $hDPJ + \mu DPJ$
- 2hDPJ
- ABCD method for multi-jet and cosmic-ray bkg. estimation
- isolation in InDet
- DPJ $\Delta\phi$
- NN tagger score

Event selection

- single lepton trigger
- \leq 3 jets with pT > 30 GeV
- exactly one signal lepton
- B-jet veto, veto mJJ > 1 TeV
- MET > 30 GeV
- mT (lepton-MET) > 40 GeV

Signal regions

Background estimation

- hDPJ
- $hDPJ + \mu DPJ$
- 2hDPJ
- ABCD method for V+jets bkg. estimation
- $\Delta \phi (MET DPJ)$
- NN tagger score

Results

- improve exclusion limits for γ_d masses and lifetimes across analysis channels
- set limits on BR for all channels for Higgs-like, Higgs and γ_d masses
- more stringent results for hDPJ:
 - combining the hadronic channels 1hDPJ and 2hDPJ in WH analysis
 - combining the hadronic channel 2hDPJ-ggF, 1hDPJ-WH and 2hDPJ-WH in both analysis

Multi-charged particles: MCP

CONF note

Analysis overview and Run2 improvements

- MCPs predicted by several BSM theories to tackle DM compositeness question or adding new symmetries to SM
- signature is a muon-like object with high ionisation losses in both InDet and MS
- background sources:
 - muons with random ionisation fluctuations towards larger values
 - detector occupancy effects
 - δ -ray yields
 - radiation background
 - sporadic-noise events
- dE/dx measured in Pixel, TRT and MS
- inclusion of photon fusion production mode
- virtual boson exchange
- make use of new late-muon trigger

Event selection and bkg. estimation

- at least one combined muon
- triggers: single muon, $E_T^{\it miss}$, late-muon trigger
- at least 6 'good' TRT hits
- ID track not in close proximity with another track
- additional tight selection for z = 2 candidates

ABCD parameters

 $TRT f^{HT} \ge 0.7$, $S(MDT dE/dx) \ge 7.0$

Results

- no significant excess observed
- limits set in cross section, mass and charge of new potential particles

Selection	$N_{ m data}^{ m A~observed}$	$N_{ m data}^{ m B~observed}$	$N_{ m data}^{ m C~observed}$	$N_{ m data}^{ m D\ expected}$	$N_{ m data}^{ m D~observed}$
z = 2	24 294	4039	9	$1.5 \pm 0.5 \text{ (stat.)} \pm 0.5 \text{ (syst.)}$	4
z > 2	192 036 934	15 004	441	0.034 ± 0.002 (stat.) ± 0.004 (syst.)	0

Summary

- In Run2 we searched for displaced vertices, displaced lepton / light hadron jets, non-pointing photons and multi-charged particles (this talk) among other interesting signatures [SUSY results] [EXOTICS results]
- no significant excess observed → stringent limits placed on BSM particles
- Run3 is here!
 - more statistics for rare decays
 - dedicated LLP triggers

Thank you for listening

Pixel dE/dx

- no significant excess observed in dE/dx analysis using pixel, TRT and MDT (MCP)
- <u>similar ATLAS search</u> using pixel dE/dx observed 7 events where 0.7 ± 0.4 were expected [3.6σ local, 3.3σ global excess]
- MCP analysis sees 2 of these events as having good enough dE/dx in pixel, but does not see sufficient dE/dx in TRT or MDT
- dE/dx \in [2.42,3.72] $MeVg^{-1}cm^2 \to \beta \in$ [0.62 0.52], particles have longer time-of-flight than SM
- directly measuring β from calorimeter and MS consistent with 1 \rightarrow low particle speed is not consistent