# Lepton Flavour Universality tests using semileptonic b-hadron decays

laroslava Bezshyiko on behalf of the LHCb collaboration





8th International Conference on High Energy Physics in the LHC Era

10/01/2023



# Semileptonic b-hadron decays



$$R \equiv \frac{BR(B \to X_c \tau \nu_{\tau})}{BR(B \to X_c \ell \nu_{\ell})}$$

- remove the dependence on  $|V_{ch}|$
- partial cancellation of theoretical uncertainties related to hadronic effects
- reduce the impact of experimental uncertainties





## Motivation to look at semileptonic decays



$$R(D) = rac{\mathcal{B}(B^0 o D au^+
u_ au)}{\mathcal{B}(B^0 o D\ell
u_\ell)}$$

$$R(D^*) = rac{\mathcal{B}(B^0 o D^* au^+ 
u_ au)}{\mathcal{B}(B^0 o D^* \ell 
u_\ell)}$$



- Measured by three different experiments:
  - LHCb, Belle, BaBar
- All point in same direction
- No definitive conclusion yet

discrepancy from SM of  $\approx 3.2 \sigma$ 



More measurements are

needed!



#### Semileptonic LFU measurements



Multiple measurements by B-factories and LHCb using different methods, technics and decay channels All results show a deviation from Standard Model.









## Semileptonic LFU measurements at LHCb



$$R(D^*)$$
 muonic with  $B^0 o D^{*-}\ell
u_\ell$  2015

[<u>PRL 115, 111803</u>]

$$R(D^*)$$
 hadronic with  $B^0 o D^{*-}\ell
u_\ell$  2018

[PRL 120, 171802] [PRD 97, 072013]

$$R(J/\psi)$$
 muonic with  $B_c^+ o J/\psi \ell^+ 
u_\ell$  2018

PRL 120, 121801

$$R(\Lambda_c)$$
 hadronic with  $\Lambda_b o \Lambda_c^+ \ell^- ar{
u_\ell}$  2022

PRL 128, 191803

Combined 
$$R(D)$$
 and  $R(D^st)$  muonic 2022

[LHCb-PAPER-2022-039 (in preparation)]

All with 3 fb<sup>-1</sup> from Run 1



Muons are favoured over electrons at LHCb because of their higher detection efficiency and momentum resolution

$$R \, \equiv \, rac{BR(B o X_c au 
u_ au)}{BR(B o X_c \mu 
u_\mu)}$$



# Different $\tau$ decays



$$R \, \equiv \, rac{BR(B o X_c au 
u_ au)}{BR(B o X_c \mu 
u_\mu)}$$

$$B 
ightarrow X_c^+ au^- \overline{
u_ au} \ au^- 
ightarrow \pi^- \pi^+ \pi^- (\pi^0) 
u_ au$$

- three charged tracks to reconstruct tau vertex
- **CONTRAS**: lower signal yields
  - $BR(\tau^- \to \pi^- \pi^+ \pi^- \nu_{\tau}) \sim 9.3\%$  different final state to normalisation



PROS: - same final state as normalisation

- large signal yields 
$$BR\left(\tau^- \to \mu^- \ \bar{\nu}_{\mu} \ \nu_{\tau}\right) \sim 17.4\%$$

CONTRAS: difficult to differentiate muon from those originating directly from b-hadron decay



## The main approach



#### **Complication**

Normalization:



#### Solution

Fit three-dimensional distributions of B rest frame kinematics:

missing mass, muon energy and invariant





# The main approach of the analysis





| Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Normalization                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| broad spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | peak in lower masses          |
| $E_{\mu}^{}$ spectrum is soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $E_{_{\mu}}$ spectrum is hard |
| $q^2 > m_{\tau}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $q^2 > 0$                     |
| $A_{c}^{+}$ $A_{c$ |                               |



### $R(D^*)$ muonic at LHCb



$$R(D^*) = rac{BR(B o D^* au
u_ au)}{BR(B o D^*\mu
u_\mu)}, \;\; au o \mu
u_\mu
u_ au\,, \;\; D^* o D( o \pi K)\pi$$

- The first semileptonic LFU measurement at the hadron collider.
- Unknown rest frame -> use approximation to access rest frame kinematics
  - assume  $\gammaeta_{z, extit{visible}} = \gammaeta_{z, extit{total}}$
  - ~20% resolution on B momentum sufficient to differentiate signal/normalisation.



$$M_{miss}^2 \hspace{1cm} E_{\mu}^* \hspace{1cm} q^2$$

- Simulation templates : signal, normalisation, partially reconstructed contributions
- Data templates : Combinatorial, mis-ID





#### $R(D^*)$ muonic at LHCb



2015

Run 1 data, 3 fb<sup>-1</sup>

[PRL 115, 111803]



Main background:

$$B o D^{**}\mu
u \ B o D^*X_c( o X\mu
u)X$$

Combinatorial background

Particle misidentification background

$$R(D^*) = 0.336 \pm 0.027(stat) \pm 0.030(sys)$$

2.1σ above SM

Largest systematic uncertainties



### $R(D^*)$ hadronic at LHCb



$$R(D^*) = rac{BR(B o D^* au
u_ au)}{BR(B o D^*\mu
u_\mu)}, \;\; au o \pi^-\pi^+\pi^-ig(\pi^0ig)
u_ au\,, \;\; D^* o D( o \pi K)\pi$$

-  $B o D^{*-} \pi^+ \pi^- \pi^+$  used as normalisation mode

$$R(D^*) = rac{N_{sig}}{N_{norm}} imes rac{\epsilon_{norm}}{\epsilon_{sig}} imes rac{1}{BR( au 
ightarrow 3\pi^\pm(\pi^0)
u_ au)} imes \left[rac{BRig(B 
ightarrow D^*3\pi^\pmig)}{BR(B 
ightarrow D^{*-}\mu^+
u_\mu)}
ight]_{external}$$

3D binned template fit to kinematic variables to extract signal:

$$q^2$$

au decay time

output of BDT trained to discriminate au from  $D_s$ 

- Fit to the invariant mass of the  $D^*3\pi$  system around the B mass to extract normalisation.
- Only one neutrino emitted at the  $\tau$  vertex that allows the vertex reconstruction.





## $R(D^*)$ hadronic at LHCb



2018

Run 1 data, 3 fb<sup>-1</sup>

[PRL 120, 171802]

[PRD 97, 072013]



Main background:

$$B o D^*3\pi^\pm X$$

$$B\to D^*D_s^+X$$

suppressed with BDT based on kinematics and resonant structure

suppressed by requiring the au vertex to be downstream wrt B vertex along beam direction with a 4 $\sigma$  significance

$$R(D^*) = 0.280 \pm 0.018(stat) \pm 0.026(sys) \pm 0.013(ext)$$

1σ above SM

Largest systematic uncertainties

the size of simulated samples, double-charm background, efficiency ratio



#### $R(J/\psi)$ muonic at LHCb

Separate signal and normalisation channel with a 3D template fit to kinematic variables:



$$R(J/\psi\,) = rac{BR(B_c^+ o J/\psi\, au^+
u_ au)}{BR(B_c^+ o J/\psi\,\mu
u_\mu)}, \;\; au^+ o \mu^+
u_\mu\overline{
u}_ au\,, \;\; J/\psi o \mu^+\mu^-$$

- LFU test with different spectator quark.

2018 Run 1 data, 3 fb<sup>-1</sup> [PRL 120, 121801]

 $M_{miss}^2 \ q^2$ 

 $\left.egin{array}{c} q^2 \ E_\mu^* \; (B{ ext{rest frame}}\;) \end{array}
ight\} \; Z(q^2,E_\mu^*)$  By decay time

 $B_c$  decay time

- Main background  $B_c o J/\psi X$  and  $\mu \leftrightarrow \pi$  mis-ID.

$$R(J/\psi) = 0.171 \pm 0.17(stat) \pm 0.18(sys)$$

#### 2 σ above SM

Largest systematic uncertainties —————

lacktriangle the size of simulated samples and  $\,B_c^+\,\,$  form factors.





#### $R(\Lambda_c)$ hadronic at LHCb



$$Rig(\Lambda_c^+ig) = rac{BR(\Lambda_b o \Lambda_c^+ au^-\overline{
u}_ au)}{BR(\Lambda_b o \Lambda_c^+\mu^-\overline{
u}_u)}, \;\; au^- o 3\pi^\pmig(\pi^0ig)\overline{
u}_ au\,, \;\; \Lambda_c^+ o pK^-\pi^+$$

- First LFU test in baryonic b 
  ightarrow c l 
  u decay.
- $\Lambda_b o \Lambda_c^+ \pi^- \pi^+ \pi^-$  used as normalisation mode.

$$Rig(\Lambda_c^+ig) = rac{N_{sig}}{N_{norm}} imes rac{\epsilon_{norm}}{\epsilon_{sig}} imes rac{1}{BR( au 
ightarrow 3\pi^\pm(\pi^0)
u_ au)} imes \left[rac{BRig(\Lambda_b 
ightarrow \Lambda_c^+ 3\pi^\pmig)}{BRig(\Lambda_b 
ightarrow \Lambda_c^+ \mu^- \overline{
u}_\muig)}
ight]_{external}$$

- 3D binned template fit to kinematic variables to extract signal:

$$q^2$$

au decay time output of BDT trained to distinguish  $\Lambda_b o \Lambda_c^+ D_s^-(X)$  decay.

- Main background  $\Lambda_b o\Lambda_c^+3\pi^\pm X$  and  $\Lambda_b o\Lambda_c^+D_{(s)}ig( o 3\pi^\pm Xig)X$ 

$$Rig(\Lambda_c^+ig) = 0.242 \pm 0.026(stat) \pm 0.040(sys) \pm 0.059(ext)$$

#### Agreement within 1σ

Largest systematic uncertainties

the double-charm background templates





# Combined R(D) and $R(D^*)$ muonic at LHCb



2022

Run 1 data, 3 fb<sup>-1</sup> First joint

measurement of

$$R\Big(D^{(*)}\Big) = rac{BRig(B o D^{(*)} au
u_ auig)}{BRig(B o D^{(*)}\mu
u_\muig)}, \;\; au o \mu
u_\mu
u_ au\,, \;\; D^* o D( o \pi K)\pi$$

- extend LHCb Run1 muonic measurement from 1D band to 2D ellipse via a simultaneous fit to disjoint  $D^0\mu^-$  and  $D^{*+}\mu^-$  samples.
- Higher branching fractions and higher efficiency due to inclusion of not fully reconstructed  $D^*$
- Using rest frame approximation, construct 3D "template" histograms for each process contributing.
- 8-way simultaneous maximum-likelihood fit to (2x) isolated signal regions,
   (2x3x) anti-isolated control regions

$$R(D^*) = 0.281 \pm 0.018(stat) \pm 0.024(sys) \ R(D) = 0.441 \pm 0.060(stat) \pm 0.066(sys)$$

#### 1.9 σ above SM

Largest systematic uncertainties

the size of simulated samples and the effects of shape parameters derived from control regions





Missing mass<sup>2</sup> (GeV / c<sup>2</sup>)<sup>2</sup>



Missing mass2 (GeV / c2)2



#### Future prospects



- Significant reduction in statistical uncertainties.
- $Run1 + Run2 = 4 \times Run1$

 $R(D^+)$ 

Reduction in systematic uncertainties due to

Improvements in simulation techniques and hardware. Better knowledge of background channels. Improved external uncertainties thanks to new measurements. New theory inputs

- Future and ongoing measurements, including angular analysis:
- $R(\Lambda_c)$  muonic

 $R(D^{**})$ 

 $R(\Lambda_c^*)$ 

 $R(D^*)$  (with e - $\mu$ )  $R(D_s)$ 

- Update of measurements with Run2







#### Conclusions



- Lepton Flavour Universality tests are a clean probe to NP, complementing the direct researches.
- Study of semileptonic B decays at LHCb very challenging due to the missing neutrinos and no beam-energy constraint.
- The LHCb experiment has performed several  $b o cl 
  u_l$  measurements that hint on tension with SM:  $R\Big(D^{(*)}\Big), \; R(J/\psi), R(\Lambda_c)$

- More measurements to come!