

ATLAS Results in Hadron Spectroscopy and Production

Brad Abbott
University of Oklahoma
For the ATLAS collaboration

HEP 2023 Valparaiso, Chile Jan 9-13, 2023

b/c physics at ATLAS

25 fb⁻¹ in Run 1 and 139 fb⁻¹ in Run 2

Analyses mostly focus on final states with muons

Typical trigger: dimuon with p_T thresholds at 4, 6 and 11 GeV

In 2018, a di-electron high-level trigger implemented and being analyzed now

Inner detector (Pixel+SCT+TRT) $p_T>0.4(0.1)$ GeV, $|\eta|<2.5$

Muon Spectrometer

Offline tracking: $|\eta| < 2.7$

Triggering: $|\eta|$ < 2.4

In this talk

High-P_T J/ ψ and ψ (2S) production at 13 TeV <u>ATLAS-CONF-2019-047</u>

Study of J/ ψ p resonances in $\Lambda_b^0 \rightarrow J/\psi p K^-$ decays <u>ATLAS-CONF-2019-048</u>

Observation of di-charmonium excess in the four muon final state ATLAS-CONF-2022-040

J/ψ and $\psi(2S)$ production

- Studies of heavy quarkonia provide insight into QCD near boundary of perturbative and non-perturbative regimes
- Important to measure cross sections to refine quarkonia production models
- ATLAS Run 1 result
 - p_T range limited to <100 GeV due to low-threshold dimuon triggers
- Run 2 (this result)
 - Use un-prescaled single muon triggers with 50 GeV threshold
 - Can now provide coverage at high-p_T < 300 GeV

J/ψ and $\psi(2S)$ Mass/Lifetime fits

 p_T range 60-360 GeV for J/ψ 60-140 GeV for ψ (2S)

Mass fits

Measured in 3 bins of rapidity |y| < 2

Lifetime fits $\tau = \frac{m}{p_T} \frac{L_{xy}}{c}$

J/ψ and $\psi(2S)$ cross sections

Good agreement between ATLAS and CMS in overlap region

J/ψ and $\psi(2S)$ prompt fractions

Non-prompt fraction \sim flat for all rapidities Similar for J/ ψ and ψ (2S)

J/ψ and $\psi(2S)$ comparison to FONLL

FONLL predictions agree reasonably well over 5 orders of magnitude

Factor of 2 deviation at high p_T

Will be interesting to see NRQCD predictions, especially at high p_T

In 2015 LHCb reported observation of J/ ψ p resonant structure in $\Lambda_h^0 \to J/\psi p K^-$ (PRL 115,072001)

Later $\Lambda_b^0 \to J/\psi p \pi^-$ decays consistent with $\Lambda_b^0 \to J/\psi p K^-$ results (PRL 117,082003)

In 2019 with a larger data set of $\Lambda_b^0 \to J/\psi p K^-$ LHC b resolved $P_c(4450)^+$ into 2 states $P_c(4440)^+$, $P_c(4457)^+$ 5.4 σ and reported an additional narrow state $P_c(4312)^+$ 7.3 σ (PRL 112,222001)

State	M [MeV]	Γ [MeV]
$P_c(4312)^+$	$4311.9 \pm 0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+3.7}_{-4.5}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+8.7}_{-10.1}$
$\frac{P_c(4457)^+}{}$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+5.7}_{-1.9}$

Not observed by GlueX Collaboration: PRL 123, 072001 Small(BR)

D0 observed 3 σ evidence in J/ ψ p events (arXiV:1910.11767)

Data set: 4.9 fb⁻¹ of 7 TeV and 20.6 fb⁻¹ of 8 TeV ATLAS Run-1 data

No hadron identification in ATLAS so need to consider numerous states.

 $J/\psi \rightarrow \mu^{+}\mu^{-}$ $p_{T}(\mu) > 4 \text{ GeV} ; |\eta(\mu)| < 2.3$ $|m(J/\psi_{pdg}) - m(\mu^{+}\mu^{-})| < 290 \text{ MeV}$

B-hadron reconstruction

$$\begin{split} &|\eta(h_x)|{<}2.5\\ &\text{ 4-track vertex cuts on }(\mu^+,\mu^-,h_1,h_2)\\ &p_T(H_b)>12\text{ GeV, }|\eta(H_b)|{<}2.1\\ &\text{Mass, }L_{xy}\text{ decay length and helicity cuts} \end{split}$$

 $m(K\pi)$ and $m(\pi K)>1.55$ GeV

Signal and backgrounds generated with Pythia 8.1 ("phase-space" model)

 $\Lambda_b{}^0 \to J/\psi pK^-$: contributions from light Λ^* states considered

 $B^0 \to J/\psi \ K^+\pi^-$: contributions from light K^* states included, potential contribution from $B^0 \to Z_c(4200)^- \ K^+ \to J/\psi \pi^- K^+$ (considered as systematic effect)

 $B_s^0 \rightarrow J/\psi K^+K^-$: contributions from ϕ and f_2 states included

 $B^0 \rightarrow J/\psi \pi^+\pi^-$ and $B_s^0 \rightarrow J/\psi \pi^+\pi^-$: intermediate and non-resonance phase space decays considered

Signal/control regions and fit procedure

Fits performed after subtracting contribution where both hadron tracks have same charge Multi-dimensional (different hadron mass assignments) binned maximum likelihood fits

 Λ_b signal region (SR): $5.59 \, {\rm GeV} < m(J/\psi, h_1 = p, h_2 = K) < 5.65 \, {\rm GeV}$

 B^0 control region (CR): $5.25~{
m GeV} < m(J/\psi, h_1 = K, h_2 = \pi) < 5.31~{
m GeV}$

 B_s^0 control region: $5.337 \, {\rm GeV} < m(J/\psi, h_1 = K, h_2 = K) < 5.397 \, {\rm GeV}$

Background shape CR: $5.35 \, {\rm GeV} < m(J/\psi, h_1 = p, h_2 = K) < 5.45 \, {\rm GeV}$

Iterate 4 step procedure

- 1) Fit to m(J/ ψ hh), m(J/ ψ h), m(hh) to obtain parameters for B⁰ and B_s⁰ backgrounds
- 2) Fit to m(J/ ψ h), m(hh) to determine number of Λ_b decays, combined B⁰ and B_s⁰ decays and combinatorial background parameters

11

- 3) Fit m(J/ ψ , h₁=p,h₂=K) in SR to obtain decay constants of Λ_b
- 4) Fit m(J/ ψ , h1=p) in SR to obtain pentaquark, mass, width , amplitudes and relative phase between pentaquark amplitudes $\Delta \phi$

Results

 $\chi^2/N_{dof} = 42.0/23$

Yields:

$$N(\Lambda_b^0 \to J/\psi \, pK^-) \approx 2270 \pm 300$$

 $N(B^0 \to J/\psi \, K^+\pi^-) \approx 10770$
 $N(B_s^0 \to J/\psi \, K^+K^-) \approx 2290$
 $N(B^0 \to J/\psi \, \pi^+\pi^-) \approx 1070$
 $N(B_s^0 \to J/\psi \, \pi^+\pi^-) \approx 1390$

No pentaquarks in fit

 χ^2/N_{dof} =37.1/39 p-value=55.7%

If fixed to LHCb values p-value=24.5%

Hypothesis with two pentaquarks P_{c1} and P_{c2} with spin parity $3/2^-$ (lighter) and $5/2^+$ (heavier)

Parameter	Value	LHCb value [5]	
$N(P_{c1})$	$400^{+130}_{-140}(\text{stat})^{+110}_{-100}(\text{syst})$	- 1	
$N(P_{c2})$	$150^{+170}_{-100}(\text{stat})^{+50}_{-90}(\text{syst})$	-	
$N(P_{c1} + P_{c2})$	$540^{+80}_{-70}(\text{stat})^{+70}_{-80}(\text{syst})$	-	
$\Delta \phi$	$2.8^{+1.0}_{-1.6}(\text{stat})^{+0.2}_{-0.1}(\text{syst}) \text{ rad}$		
$m(P_{c1})$	$4282^{+33}_{-26}(\text{stat})^{+28}_{-7}(\text{syst}) \text{ MeV}$	$4380 \pm 8 \pm 29~\mathrm{MeV}$	
$\Gamma(P_{c1})$	$140^{+77}_{-50} \text{ (stat)}^{+41}_{-33} \text{ (syst) MeV}$	$205\pm18\pm86~\mathrm{MeV}$	
$m(P_{c2})$	$4449^{+20}_{-29} \text{ (stat)}^{+18}_{-10} \text{ (syst) MeV}$	$4449.8 \pm 1.7 \pm 2.5 \ \mathrm{MeV}$	
$\Gamma(P_{c2})$	$51^{+59}_{-48} \text{ (stat)}^{+14}_{-46} \text{ (syst) MeV}$	$39 \pm 5 \pm 19 \text{ MeV}$	

 χ^2/N_{dof} =37.1/42 p-value=68.6%

 $m(J/\psi p)$

Masses, widths, relative yields of narrow pentaquarks fixed to LHCb values

Hypothesis with four pentaquarks P_{c1},P_{c2},P_{c3},P_{c4}

Good agreement with LHCb (slight tension in P_{c1}

Better fit if pentaquarks included but non-pentaquark model cannot be excluded

Tetraquarks in four muon final state

LHCb reported evidence of a narrow resonance at 6.9 GeV in di-J/ $\psi \rightarrow 4\mu$ arXiv:2006.16957

Can be interpreted as a tetraquark consisting of four charm quarks

Enhancement near di-J/ ψ threshold could be due to:

mixture of multiple four-charm quark states

contributions from feed down decays of four charm quark states through heavier quarkonia rescattering of charmonium final state

Assuming no interference with NRSPS continuum

$$m[X(6900)] = 6905 \pm 11 \pm 7 \,\text{MeV}/c^2$$

 $\Gamma[X(6900)] = 80 \pm 19 \pm 33 \,\text{MeV}$

$$m[X(6900)] = 6886 \pm 11 \pm 11 \text{ MeV}/c^2$$

 $\Gamma[X(6900)] = 168 \pm 33 \pm 69 \text{ MeV}$

Observation of di-charmonium excess in the four muon final state with the ATLAS detector

Dataset: 139 fb⁻¹ of 13 TeV Run-2 data collected in 2015-2018

ATLAS-CONF-2022-040

Search in 4- μ final state in di-J/ ψ and J/ ψ + ψ (2S) channels. (di- ψ (2S) \rightarrow 4 μ statistically not accessible)

Backgrounds simulated with Pythia 8 with data driven corrections

Prompt di-J/ψ: Single Parton Scattering (SPS) and Double Parton Scattering (DPS)

Non-prompt di-J/ ψ : bb \rightarrow J/ ψ J/ ψ

"Others" background: single (prompt or non-prompt) charmonium plus fake muons, non-peaking background containing no real charmonium candidates

Signal simulated using JHU generator: TQ mass=6.9 GeV, width 0.1 GeV, spin=0

SPS mass shape validated using $\Delta R \ge 0.25$

∆R defined between onia candidates

CR defined in sidebands and by requiring one charmonium containing a non-muon track

Observation of di-charmonium excess in the four muon final state with the ATLAS detector

Fitting

Unbinned maximum likelihood fits on the four muon mass spectra < 11 GeV signal region $\Delta R < 0.25$, control region $\Delta R \ge 0.25$, with transfer factors for background yields from MC or data driven techniques

Signal consists of several interfering S-wave Breit-Wigner resonances convoluted with a mass resolution function $R(\alpha)$

$$f_s(x) = \left|\sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + i m_i \Gamma_i}\right|^2 \sqrt{1 - \frac{4 m_{J/\psi}^2}{x^2}} \otimes R(\alpha) \qquad \text{representing armonic production}$$

z_i: complex numbers representing amplitudes

with zero phase

No interference with NRSPS

Di-J/ ψ : models with 2 or 3 resonances compared using χ^2 or toy MC

 $J/\psi+\psi(2S)$:

Model A: same resonances as di-J/ ψ + 4th standalone resonance

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + i m_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + i m_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

Model B: single resonance

Observation of di-charmonium excess in the four muon final state with the ATLAS detector

 4μ mass before fit

Feed-down from J/ ψ + ψ (2S) or higher di-charmonium resonances not included

Significance of third resonance: 10 $\boldsymbol{\sigma}$

LHCb model I values for 3rd resonance gives similar results

LHCb model II (interference with NRSPS) disfavored based on fit quality

70% worse χ^2 /dof using 2-resonances

Results for di-J/ψ

SR 3 resonance fit, 2 of 4 degenerate solutions

Fitted mass and widths

(GeV)	m_0	Γ_0	m_1	Γ_1
di - J/ψ	$6.22 \pm 0.05^{+0.04}_{-0.05}$	$0.31 \pm 0.12^{+0.07}_{-0.08}$	$6.62 \pm 0.03^{+0.02}_{-0.01}$	$0.31 \pm 0.09^{+0.06}_{-0.11}$
αι υ / φ =	m_2	Γ_2	_	
	$6.87 \pm 0.03^{+0.06}_{-0.01}$	$0.12 \pm 0.04^{+0.03}_{-0.01}$	_	_

6.9 GeV resonance confirmedBest fit with 3 interfering resonances.Other explanations possible

Observation of di-charmonium excess in the four muon final state with the ATLAS detector

Results for $J/\psi + \psi(2S)$

4μ mass before fit

Fitted mass in SR for Model A and Model B

Significance for Model A: $4.6 \, \sigma$ second resonance at $7.2 \, \text{GeV}$: $3.2 \, \sigma$

Significance for Model B: 4.3 σ

Fitted mass and width

(GeV)		m_3	Γ_3
$J/\psi + \psi(2S)$	model A	$7.22 \pm 0.03^{+0.02}_{-0.03}$	$0.10^{+0.13+0.06}_{-0.07-0.05}$
		$6.78 \pm 0.36^{+0.35}_{-0.54}$	

Conclusions

J/ψ and $\psi(2S)$ cross sections at high p_T

Non-prompt fraction ~0.7 for both J/ ψ and ψ (2S) Predictions from FONLL tend to be higher than data at high p_T

Study of J/ ψ p resonances in $\Lambda_b{}^0 \rightarrow J/\psi$ pK⁻ decays

Evidence for existence of pentaquark states consistent with LHCb results Data does not allow independent measurements of pentaquark parameters Model without pentaquarks states not excluded

Di-charmonium search in 4μ final state

Significance excess found in di-J/ ψ channel Resonance near 6.9 GeV and a broad structure at lower mass Consistent with LHCb results

3-resonance model with interference is best description of the models considered Other interpretations not ruled out

multiple peaks without interference reflections threshold enhancement

Excess observed in J/ ψ + ψ (2S) channel at 6.9 GeV and 7.2 GeV More data needed to characterize excesses in both channels