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Magnetic Monopoles
• Pierre Curie was the first to suggest that magnetic charges could exist

Séances de la Société Française de Physique (Paris), p76 (1894)

• In 1931 Paul Dirac showed that if just one magnetic monopole existed, then all electric charge in the 
universe would be quantized 

Proc. R. Soc. Lond. A 133, 60 (1931)

• In 1974 t’Hooft and, independently, Polyakov showed that any Grand Unified Theory (GUT) that incorporates 
electro-magnetism can contain magnetic monopoles

Nucl. Phys. B 79, 276 (1974); Письма в ЖЭТФ 20, 430 (1974)

• Mass is unknown. While the GUT scale monopole (~1016 GeV) received the most interest earlier, several 
recent models point to possibility of monopoles with masses accessible at the LHC

Phys. Lett. B 391, 360 (1997); EPJC 75, 67 (2015); Phys. Lett. B 756, 29 (2016); Phys. Rev. D 95, 104025 (2017); 
EPJC 77, 444 (2017); Phys. Rev. D 97, 125010 (2018); Nucl. Phys. B 969 115468 (2021)
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Magnetic Monopole’s basic properties

𝑒𝑒 ⋅ 𝑔𝑔𝐷𝐷 =
ℏ𝑐𝑐
2
𝑛𝑛 → 𝑔𝑔𝐷𝐷 =

𝑛𝑛
2𝛼𝛼
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𝟏𝟏𝒈𝒈𝑫𝑫 = 𝟔𝟔𝟔𝟔.𝟓𝟓 ⋅ 𝒆𝒆

• Depending on the model, the fundamental charge could be 
𝑔𝑔𝑀𝑀 = 2 𝑜𝑜𝑜𝑜 3𝑔𝑔𝐷𝐷 (see talk by Q. Shafi)
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ℏ𝒄𝒄
~𝟑𝟑𝟑𝟑 • Perturbative field theory does not apply
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𝑴𝑴𝑴𝑴𝑴𝑴
𝑮𝑮 ⋅ 𝒎𝒎

• IMMs in the galactic field and LHC monopoles will be relativistic

−
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• Fast monopoles are highly ionizing! 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

~𝑔𝑔𝑀𝑀2 = 4700 MIP for 1𝑔𝑔𝐷𝐷
• Ionization of 𝑔𝑔𝑀𝑀 increases with β, as opposite to 𝑒𝑒
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Magnetic monopole searches
The Cabrera’s event, 1982
20 cm2, induction (SQUID)

Imperial College event, 1985
0.18 m2, induction (SQUID)
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Phys. Rev. Lett. 48, 1378−1381 (1982)

Nature 321, 402 - 406 (1986)



Magnetic monopole searches
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• MACRO
• dE/dX (NTDs, scint., str.tubes) 
• ~10000 m2

• SLIM
• dE/dX (NTDs)
• ~5 km asl
• ~400 m2

• Last cosmic ray searches have just peaked 
into interesting parameter space  – below 
the Parker bound

• To probe lower-mass IMMs one needs to 
go to high elevations, so there is still a 
wide gap of unprobed masses between 
accelerator and cosmic ray experiments

Particle Data Group review (2021)



Magnetic monopole searches

• p/p, e-/p, e-/e+, p/p+ colliders – all searched for 
magnetic monopoles, both directly and indirectly 

• Rates and kinematics are hard to calculate, as the 
coupling constant >>1

• To minimize model dependencies, compare results 
on cross-section limits vs. half the center-of-mass 
collision energy
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Particle Data Group review (2016)Drell-Yan production



MoEDAL – dedicated search at the LHC

• “Monopole and other Exotics Detector At LHC” optimized to search fo magnetic monopoles and 
other highly ionizing particles with magnetic and/or electric charge (dyons, nuclearites, Q-balls, ) 

• ~70 physicists from >20 institutions from 7 countries. Approved by CERN 2009, started data-taking
Spring 2015

• Deployed at IP8 in the LHCb’s VELO cavern. Uses nuclear track detectors (NTDs), trapping volumes 
(MMTs) and TimePix detectors

• World-leading limits on g > 2gD monopole production in p-p collisions
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MoEDAL’s physics program, before Run-3 

Massive long-
lived particles 

(LLPs) with 
electrical charge

Q-balls

R-hadrons

SUSY-MSP

Quirks

Long-lived H++

H --> N̅̅̅̅̅N

Mirror fermions

Technibaryons
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Int.J.Mod.Phys. A 29, 1430050 (2014)

Magnetically 
charged 
particles

Low mass 
magnetic 

monopoles

Dyons

D-particles

Search for magnetic monopole with mass up to 7 TeV and 
magnetic charge up to 9 gD

Search for exotic, massive long-lived particles with Z/β > 5, 
mass up to 7 TeV, and charge up to 400 e



Main sub-detector systems: MMTs

• The binding energies of magnetic monopoles in nuclei with large magnetic 
dipole moments estimated to be hundreds of keV Nucl. Phys. B 255, 465 (1985)

• Close to 1 ton of Al MMTs deployed by MoEDAL
• After exposure, the MMTs are analyzed by a SQUID at ETH Zurich
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Main sub-detector systems: NTDs

• Largest array (~120 m2) of NTDs 
deployed at an accelerator

• Stacks of CR-39 (5 MIP threshold) 
and Makrofol (50 MIP threshold)

• Highly ionizing particle creates a 
latent track by displacing atoms, 
revealed by controlled etching 

• Practically no Standard Model 
backgrounds
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The MoEDAL detector
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Complementarity
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Designed & Optimized for HIP Designed & optimized for SM
relativistic MIPs & photons

Insensitive to SM backgrounds 

Response estimated from 
detailed Monte Carlo

Can infer magnetic charge 
from tracking and dE/dx

Can directly detect & trap 
magnetic charge

Response calibrated by 
heavy ions

MoEDAL

ATLAS/CMS

Sophisticated triggers

Different systematics and mode of detection of MoEDAL compared to the ATLAS/CMS 
experiments  important  validation of and insights into the potential joint observation



Recent Results

• “Magnetic monopole search with the full 
MoEDAL trapping detector in 13 
TeV pp collisions interpreted in photon-
fusion and Drell-Yan production”

• Phys. Rev. Lett. 123, 021802 (2019)
• For the first time at the LHC, monopoles 

were searched for via photon-fusion 
mechanism (in addition of Drell–Yan)

• Best cross section limits 𝒈𝒈 > 𝟐𝟐𝒈𝒈𝑫𝑫
• World leading mass limits (1.5–3.75 TeV) 

on magnetic charges 𝒈𝒈 > 𝟐𝟐𝒈𝒈𝑫𝑫
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Recent Results 

• “First search for dyons with the full MoEDAL trapping detector in 13 
TeV pp collisions”

• Phys. Rev. Lett. 126, 071801 (2021) 
• Mass limits 0.79–1.91 TeV on dyons with up to 5gD magnetic and 1e – 200e

electric charges
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State of the field for MM searches and 
projection for Run-3
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Difficulties with collider searches for MMs 
1. Most recent models predict monopoles with 
internal structure – composite monopoles. But 
production of composite monopoles in 
elementary particle collisions is expected to be 
suppressed* by a form factor, e-4/α ~10-250.
Consequently, all collider searches to date 
focused on point-like MM

2. Mass limits calculated with Feynman-like 
diagrams do not account for non-perturbative 
nature of large monopole-photon coupling. Any 
perturbatively-calculated cross section is 
indicative and can only be used to facilitate 
comparisons between experiments 

*“Caveat on the caveat”: purely nonperturbative treatment, which 
is lacking, may potentially lead to a different conclusion
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Int. J. Mod. Phys. A 35, No. 23, 2030012 (2020) 



The Schwinger mechanism

• Spontaneous creation of electron–
positron pairs in presence of an 
extremely strong electric field

• 𝐸𝐸𝑠𝑠 = 𝑚𝑚𝑐𝑐
2𝑐𝑐3

𝑞𝑞𝑒𝑒ℏ
≈ 1.32 × 1018 𝑉𝑉/𝑚𝑚

• Due to the inherent instability of QED 
vacuum in presence of a strong electric 
field

• Pair production originates from the 
quantum mechanical decay of an 
electromagnetic field; vacuum pairs tunnel 
into existence

• Rate is calculable non–perturbatively 
using semi–classical instanton techniques
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Prog, Part. Nucl. Phys. 87, 1 (2016) 



• By electromagnetic duality, a sufficiently 
strong magnetic field would produce 
magnetic monopoles via the same 
mechanism

• Ultraperipheral Pb-Pb collisions at the 
LHC have produced the strongest peak 
magnetic fields in the known universe

• B ~ 1016 T, as compared to ~ 1011-12 T on a 
magnetar’s surface

• Apart from the nonperturbatively 
calculated cross section, no exponential 
suppression is expected due to the 
coherence of the field over the scale 
comparable to the monopole size

• In fact, the strong coupling and finite size 
only enhances the production of Schwinger 
monopoles!
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The Schwinger mechanism at the LHC

Nucl. Phys. B 194, 38 – 64 (1982)



MoEDAL search for Schwinger monopoles 

• The 2018 LHC heavy-ion run
• Relativistic, bare Pb nuclei, γ = 2675
• CM energy of 5.02 TeV per collision
• Ultra-peripheral collisions with Bpeak

~ 1020 G and ω ~ 1026 s-1 (inverse 
decay time)

• 880 kg of MoEDAL’s MMTs 
exposed to integrated luminosity 
of 0.235 nb-1

• ~2⋅109 Pb-Pb collisions in total
• ~6⋅108 ultraperipheral
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Results of the search

• No statistically significant signal was 
observed

• The existence of a monopole with g > 
0.5gD in the trapping volume was 
excluded at more than 3σ

• First reliable limits on monopole mass
• Based on nonperturbative cross section 

calculation
• No suppression for composite monopoles 

• For more details of this search, see 
the Aditya Upreti’s poster!
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Nature 602 (2022) 7895, 63-67

https://doi.org/10.1038/s41586-021-04298-1


Searches for other Exotics with MoEDAL

• MoEDAL NTDs are also sensitive to 
highly electrically charged objects 
(HECOs) that may include aggregates of 
quark matter, Q-balls, or micro black 
hole remnants

• First paper on Run-1 dataset has been 
published in EPJC in 2022

• If sufficiently slow-moving, even singly 
or multiply (≲ 10) charged particles will 
leave a track in the NTDs

• Supersymmetry offers such long-lived 
states: sleptons, R-hadrons, charginos

• Multiply charged scalars or fermions are, 
for example, predicted in several neutrino 
mass models.
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EPJC 80, 572 (2020)

https://link.springer.com/article/10.1140/epjc/s10052-022-10608-2


MoEDAL Apparatus for Penetrating Particles

• Approved by the CERN Research 
board end of 2021

• Extension of MoEDAL that will 
provide competitive sensitivity 
to milli-charged particles (mCPs) 
with electric charges down to 
0.001 e

• Placed in UA83, ca. 100 m from 
the IP8
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MoEDAL Apparatus for Penetrating Particles

• Detector consists of 4 sections 
with 10×10 array of 100 
scintillator bars each

• Protected by a hermetic VETO 
counter system

• Each through-going particle sees 3 
m of scintillator readout by a 
coincidence of 4 low noise PMTs

• Being installed in UA83, ~100 m 
from the IP8
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UA graduate student Aditya Upreti installing the
MAPP’s scintillators into the support structure, 

CERN, February 2022. (Image: CERN News)

https://home.cern/news/news/physics/moedal-gets-new-detector


MoEDAL Apparatus for Penetrating Particles

• MAPP will be sensitive to mCPs, which are 
predicted within the framework of (massless) 
vector portal dark sector models 

• mCPs’ ionization losses are too low to be 
effectively studied by ATLAS and CMS

• In Run-3, MAPP will be 
competitive/complementary with/to milliQan

• while covering different pseudo-rapidity range 
and having different systematics

• See also talk by Giovanna Cottin
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Existing bounds and projected sensitivity for mQPs, for models with 
a massless dark photon



Summary

• The existence of magnetic monopoles is well motivated, but their mass and 
production mechanism are uncertain

• MoEDAL is a dedicated search for magnetic monopoles and other exotic 
particles at the LHC that established world-leading limits on production of 
monopoles and dyons in p-p collisions

• Enabled by recent theoretical advances, MoEDAL performed the first 
search for magnetic monopoles produced in Pb-Pb collisions via the 
Schwinger mechanism

• First limit on MM masses based on nonperturbative cross section
• Applies to composite monopoles

• MoEDAL will continue taking data in Run-3, extending its reach to 
monopoles with larger mass and magnetic charge, as well as expanding the 
search to other long-lived and milli-charged particles

Igor Ostrovskiy, UA HEP2023, Chile 26



MAPP physics program
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CMS Run-1 beampipe
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Recent Theoretical Advances in low-mass Monopole Solutions 
Relative low-scale GUT-LIKE MONOPOLES ( ~ 103 – 109 GeV )

from appropriate symmetry breaking patterns of special BSM Gauge Groups
e.g. D-brane inspired trinification SUC(3) x SUL(2) x SUR(2)

T. W. Kephart, G.K. Leontaris, Q. Shafi
JHEP 1710 (2017) 176

Detectable @ LHC (Directly or indirectly)
or cosmically, with magnetic charges  ≥ 2gD

Y.M. Cho, K. Kim, J.H. Yoon
Eur.Phys.J. C75 (2015) no.2, 67

Ellis, NEM, You, PLB 756, 25 (2016)

String-Inspired Born-Infeld (BI)Hypercharge sector SM extension
From light-by-light searches in LHC monopole mass ≥ 11 – 14 TeV
To play a role in (delay)  electroweak phase transition in Universe and 
be consistent with BBN mass of monopole ~  9.3 x 103 – 2.3  104 TeV

NEM, Sarben Sarkar. 
Phys.Rev. D97 (2018) no.12, 125010 
&

String-Inspired magnetic monopoles from global monopoles
in the presence of antisymmetric tensor torsion-like axion fields
Torsion (axion) charge magnetic charge. Mass is free parameter

Electroweak scale monopoles (890 GeV-3 TeV),in models with 
non-sterile right-handed neutrinos + complex Higgs triplets + doublets 
+ real Higgs triplet (Custodial symmetry) model also predicts neutrino 
masses  quantisation prediction for weak mixing angle 

P.Q. Hung, arXiv:2003.02794

Hung, Ellis, NEM, arXiv: 2008.00464

S. Arunasalam, A.Kobakhidze
Eur.Phys.J. C77 (2017) no.7, 444 & 
arXiv:1810.10696;
NEM, Sarben Sarkar. Universe 5
(2018) 1, 8 [arXiv1812.00495 ]

Ellis, NEM, You, PRL118(2017),261802

Electroweak Monopoles in extensions of the Standard Model
with non-minimal Higgs coupling in hypercharge  sector
with masses m ~ 4-6 TeV

(Nucl.Phys.B 962 (2021) 115278)
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http://arxiv.org/abs/arXiv:1810.10696


Two cross section approximations
• Two complementary calculations with uncorrelated 

uncertainties
• Free-particle approximation (FPA)

• The spacetime dependence of the electromagnetic field of 
the heavy ions is treated exactly, but monopole self-
interactions are neglected

• Phys. Rev. D 104, 015033 (2021)
• Locally-constant field approximation (LCFA)

• The spacetime dependence of the field is neglected but self-
interactions are treated exactly

• Phys. Rev. D 100, 015041 (2019)
• While neither is complete, both are expected to yield 

conservative lower limits
• For FPA, the leading effects of self-interactions have been 

shown to enhance the cross section
• Same for the LCFA and the leading effects of spacetime 

dependence

Igor Ostrovskiy, UA ICHEP 2022 30

LCFA

FPA



Kinematics

• Based on the FPA approach 
because at the LHC energies the 
momentum distribution is mainly 
due to the time dependence of 
the electromagnetic field

• Phys. Rev. D 104, 015033 (2021)
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Composite Point-like
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