

### Parton Densities

Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections

Hard tail  $P o \infty$  limit Gauge link

Renormalization Reduced pseudo-ITD

Data Building  $\overline{MS}$  IT

Summary

# Structure of Pseudo- and Quasi-PDFs A.V. Radyushkin (ODU/Jlab)

Lattice PDF Workshop U. Maryland April 8, 2018

# Parton Densities and Transverse Momentum Cut-Off

2/28

Pseudo-&Quasi-PDFs

Parton Densities

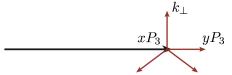
$$\label{eq:continuous} \begin{split} & \text{Transverse} \\ & \text{Momentum Cut-off} \\ & \text{Pseudo-PDF} \\ & \text{Rate of approach} \\ & \text{Target mass} \\ & \text{corrections} \\ & \text{Hard tail} \\ & P \longrightarrow \infty \text{ limit} \\ & \text{Gauge link} \\ & \text{Renormalization} \end{split}$$

Evolution in lattice data

Building  $\overline{MS}$  I'

Summary

- Original Feynman approach to PDFs f(x): infinite momentum  $P_3 \to \infty$  limit of  $k_3 = xP_3$  momentum distributions ( $\sim$  quasi-PDFs  $Q(x, P_3)$ )
- f(x) were treated as  $k_{\perp}$ -integrated  $f(x,k_{\perp})$  distributions
- Understood from the start:  $Q(x,P_3\to\infty)\to f(x)$  limit exists only if  $f(x,k_\perp)$  rapidly decreases with  $k_\perp$
- "Transverse momentum cut-off",  $\langle k_\perp^2 \rangle \sim 1/R_{\rm hadr}^2$
- Question 1: why  $Q(x, P_3)$  differs from f(x)?
- Question 2: how does  $Q(x, P_3)$  convert into f(x) when  $P_3 \to \infty$ ?
- Qualitative answer:  $yP_3$  comes from two sources: from the motion of the hadron  $(xP_3)$  and from Fermi motion of quarks inside the hadron  $(y-x)P_3 \sim 1/R_{\rm hadr}$



- $(y-x)P_3 \sim 1/R_{hadr}$  part has the same origin as transverse momentum
- ⇒ One should be able to relate quasi-PDFs to TMDs



# Parton Densities and Transverse Momentum Cut-Off

3/28

#### Pseudo-&Quasi-PDFs

Parton Densities Transverse

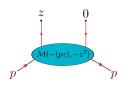
Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link

Reduced pseudo-ITD

Evolution in lattice data

Data
Building  $\overline{MS}$  F
Results

ummary



Basic matrix element (ignoring spin)

$$\langle p|\phi(0)\phi(z)|p\rangle = \mathcal{M}(-(pz), -z^2)$$

- Lorentz invariance:  $\mathcal{M}$  depends on z through (pz) and  $z^2$
- Take  $z = (0, 0, 0, z_3)$ , then  $-(pz) \equiv \nu = Pz_3$  and  $-z^2 = z_3^2$
- loffe time  $\nu$ :  $\mathcal{M}(\nu, z_3^2) = \text{loffe time pseudo-distribution (pseudo-ITD)}$
- Introduce quasi-PDF (Ji,2013)

$$Q(y,P) = \frac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-iyPz_3} \, \mathcal{M}(Pz_3, z_3^2) = \int_{-\infty}^{\infty} \frac{d\nu}{2\pi} \, e^{-iy\nu} \, \mathcal{M}(\nu, \nu^2/P^2)$$

• Take  $z=(z_+=0,z_-,z_1,z_2)$ , then  $\nu=-p^+z^-$  and  $-z^2=z_1^2+z_2^2$ . TMD:

$$\mathcal{M}(\nu, z_1^2 + z_2^2) = \int_{-1}^1 dx \ e^{ix\nu} \int_{-\infty}^\infty dk_1 dk_2 e^{i(k_1 z_1 + k_2 z_2)} \mathcal{F}(x, k_1^2 + k_2^2)$$

• Take  $z_1 = 0, z_2 = \nu/P$  and use for qPDF

$$Q(y,P) = P \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x, k_1^2 + (y-x)^2 P^2)$$

• qPDF variable y has the  $-\infty < y < \infty$  support, since  $-\infty < k_2 < \infty$ 

### loffe-time distributions and Pseudo-PDFs

Pseudo-&Quasi-PDFs

Pseudo-PDF

• Pseudo-PDF  $\mathcal{P}(x, -z^2)$ : Fourier transform of pseudo-ITD with respect to  $\nu$ 

$$\mathcal{M}(\nu, -z^2) = \int_{-1}^{1} dx \, e^{-ix\nu} \, \mathcal{P}(x, -z^2)$$

• Limits  $-1 < x \le 1$  for any Feynman diagram. Relation to TMD

$$\mathcal{P}(x, z_{\perp}^2) = \int d^2 \mathbf{k}_{\perp} e^{i(\mathbf{k}_{\perp} \mathbf{z}_{\perp})} \mathcal{F}(x, k_{\perp}^2)$$

- When  $\mathcal{F}(x,k_{\perp}^2)$  rapidly vanishes with  $k_{\perp}$ , pseudo-PDF and pseudo-ITD are regular for  $z^2 = 0$ , and  $\mathcal{P}(x,0) = f(x)$
- Quasi-PDF to pseudo-PDF relation

$$Q(y,P) = \frac{|P|}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 e^{-i(y-x)Pz_3} \mathcal{P}(x,z_3^2)$$

• Expand  $\mathcal{P}(x, z_2^2)$  in  $z_2^2$ 

$$\mathcal{P}(x, z_3^2) = \sum_{l=0}^{\infty} (z_3^2 \Lambda^2)^l \, \mathcal{P}_l(x)$$

Q(y, P) approaches f(y) like

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \left(\frac{\Lambda^2}{P^2}\right)^l \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{P}_l(y)$$

### Quasi-PDFs and Pseudo-PDFs

Pseudo-&Quasi-PDFs

Densities
Transverse

 $\label{eq:PDF} \begin{aligned} & \text{Pseudo-PDF} \\ & \text{Rate of approach} \\ & \text{Target mass} \\ & \text{corrections} \\ & \text{Hard tail} \\ & P \to \infty \text{ limit} \\ & \text{Gauge link} \\ & \text{Renormalization} \end{aligned}$ 

EVOIUTION IN lattice data

Data

Building MS ITI

Results

Summary

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \left(\frac{\Lambda^2}{P^2}\right)^l \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{P}_l(y)$$

- Support mismatch:  $-\infty < y < \infty$  for qPDF Q(y, P), while  $\mathcal{P}_l(y)$ 's vanish outside  $-1 \le y \le 1$
- Do not take this expansion too literally
  - Innocently-looking derivatives of  $\mathcal{P}_l(y)$  generate infinite tower of singular functions like  $\delta(y)$ ,  $\delta(y\pm 1)$  and their derivatives
- Recall: even if a function f(y) has a nontrivial support  $\Omega$  (say,  $-1 \le y \le 1$ ), one may formally represent it by a series

$$f(y) = \sum_{N=0}^{\infty} \frac{(-1)^N}{N!} M_N \, \delta^{(N)}(y)$$

over the functions  $\delta^{(N)}(y)$  with an apparent support at one point y=0 only

•  $M_N$  are moments of f(y)

$$M_N = \int_{\Omega} dy \, y^N f(y)$$

• While the difference between Q(y, P) and f(y) is formally given by a series in powers of  $1/P^2$ , its coefficients are not the ordinary functions of y



### Moments of Quasi-PDFs

Pseudo-&Quasi-PDFs

In terms of TMDs:

$$Q(y,P) = f(y) + \sum_{l=1}^{\infty} \int d^2k_{\perp} \frac{k_{\perp}^{2l}}{4^l P^{2l}(l!)^2} \frac{\partial^{2l}}{\partial y^{2l}} \mathcal{F}(y,k_{\perp}^2)$$

To eliminate mismatch, take  $y^n$  moments  $\langle y^n \rangle_Q$  of the quasi-PDFs

$$\langle y^n \rangle_Q \equiv \int_{-\infty}^{\infty} dy \, y^n Q(y, P) = \sum_{l=0}^{[n/2]} \frac{n!}{(n-2l)!(l!)^2} \frac{\langle x^{n-2l} k_{\perp}^{2l} \rangle_{\mathcal{F}}}{4^l P^{2l}}$$

•  $\langle x^{n-2l}k_{\perp}^{2l}\rangle_{\mathcal{F}}$  are the combined moments of TMDs

$$\langle x^{n-2l} k_{\perp}^{2l} \rangle_{\mathcal{F}} \equiv \int_{-1}^{1} dx \, x^{n-2l} \int d^{2}k_{\perp} \, k_{\perp}^{2l} \, \mathcal{F}(x, k_{\perp}^{2})$$

- Expansion makes sense only when  $\mathcal{F}(x,k_{\perp}^2)$  vanishes faster than any power of  $1/k_{\perp}^2$
- Is it possible to study the approach of Q(y, P) to f(y) for fixed y?



Pseudo-PDF

 $lacktriangleq z_3$ -dependence has the same origin as  $k_\perp$  dependence of TMDs

Quasi-PDFs can be obtained from TMDs (A.R., 2016)

$$Q(y,P)/P = \int_{-1}^{1} dx \int_{-\infty}^{\infty} dk_1 \mathcal{F}(x, k_1^2 + (y-x)^2 P^2)$$

Or from pseudo-PDFs

$$Q(y,P) = \frac{P}{2\pi} \int_{-1}^{1} dx \int_{-\infty}^{\infty} dz_3 \ e^{i(x-y)(Pz_3)} \mathcal{P}(x,z_3^2)$$

Try factorized model

$$\mathcal{P}(x,z_3^2) = f(x)I(z_3^2)$$

• Popular idea: Gaussian dependence  $I(z_3^2) = e^{-z_3^2\Lambda^2/4}$ 

$$Q_G^{\text{fact}}(y, P) = \frac{P}{\Lambda \sqrt{\pi}} \int_{-1}^{1} dx \, f(x) \, e^{-(y-x)P^2/\Lambda^2}$$

- αQuasi-FD
- Densities Transverse

Momentum Cut-ol
Pseudo-PDF

Target mass corrections Hard tail  $P o \infty$  limit Gauge link Renormalization Reduced

lattice data

Data

Building MS ITE

Summary



### Numerical results for Gaussian model

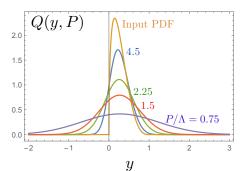
Pseudo-&Quasi-PDFs

Densities
Transverse
Momentum Cut-ol
Pseudo-PDF
Rate of approach
Target mass
corrections
Hard tail  $P \to \infty$  limit
Gauge link
Renormalization

Evolution in lattice data Data Building  $\overline{MS}$  ITI Results

Summary

 $\bullet$  Take PDF  $f(x)=u_v(x)-d_v(x)=\frac{315}{32}\sqrt{x}(1-x)^3\theta(0\leq x\leq 1)$  obtained by pseudo-PDF method (Orginos et al. 2017)



- Curves for  $P/\Lambda=0.75, 1.5, 2.25$  are close to qPDFs obtained by Lin et al (2016), upper momentum P=1.3 GeV, effective  $\Lambda\approx 600$  MeV
- Need  $P \sim 4.5\,\Lambda \approx 2.7$  GeV to get reasonably close to input PDF
- Note a lot of dirt for negative y, even for  $P/\Lambda = 4.5$



# Rate of approach

Pseudo-&Quasi-PDFs

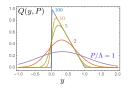
 $\begin{array}{ll} \textbf{Parton} \\ \textbf{Densities} \\ \textbf{Transverse} \\ \textbf{Momentum Cut-off} \\ \textbf{Pseudo-PDF} \\ \textbf{Rate of approach} \\ \textbf{Target mass} \\ \textbf{corrections} \\ \textbf{Hard tail} \\ P \rightarrow \infty \ \text{limit} \\ \textbf{Gauge link} \end{array}$ 

lattice data Data Building  $\overline{MS}$  IT Results

Summary

• How do the quasi-PDF curves approach the limiting PDF curve point by point in y?

 $\bullet \ \ \, \text{Take a simple input PDF} \, f(x) = 1 - x \, (\text{and Gaussian dependence on} \, k_\perp)$ 



Analytic form:

$$\begin{split} Q(y,P) = &\frac{1}{2}(1-y)\Big[\text{erf}\left[(1-y)P/\Lambda\right] + \text{erf}\left[yP/\Lambda\right]\Big] \\ &+ \frac{\Lambda}{2\sqrt{\pi}P}\left[e^{-(1-y)^2P^2/\Lambda^2} - e^{-y^2P^2/\Lambda^2}\right] \end{split}$$

- lacktriangledown P-dependence reflects the  $k_{\perp}$ -dependence of TMD
- In the middle of the  $0 \le y \le 1$  interval

$$Q(1/2, P) = \frac{1}{2} - \frac{\Lambda e^{-P^2/4\Lambda^2}}{\sqrt{\pi}P} \left[ 1 - \frac{2\Lambda^2}{P^2} - \dots \right]$$

- The approach to the limiting value is  $\sim e^{-P^2/4\Lambda^2}$  rather than a powerlike
- For y=1, the approach is like  $\sqrt{\Lambda^2/P^2}$

$$Q(1,P) = \frac{\Lambda}{2\sqrt{\pi}P} \left[ 1 - e^{-P^2/\Lambda^2} \right]$$

rather than like  $\Lambda^2/P^2$ 



# Rate of approach, cont.

Pseudo-&Quasi-PDFs

Parton
Densities
Transverse
Momentum Cut
Pseudo-PDF

Rate of approach Target mass corrections Hard tall  $P \to \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

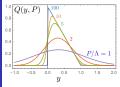
lattice data

Data

Building  $\overline{ ext{MS}}$  ITI

Results

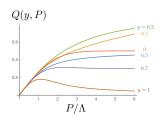
Summary



Non-analytic behavior with respect to  $\Lambda^2/P^2$  is present at another end-point as well

$$Q(0,P) = \frac{1}{2} + \frac{\Lambda}{2\sqrt{\pi}P} \left[ 1 - 2e^{-P^2/\Lambda^2} \left( 1 - \frac{\Lambda^2}{4P^2} - \dots \right) \right]$$

lacktriangle Quasi-PDF approaches 1/2, average of its  $0_+$  and  $0_-$  limits of the input PDF



- Curves illustrating P-dependence of quasi-PDFs for particular values of y
- With just three points, at  $P/\Lambda=0.75, 1.5$  and 2.25, it is rather difficult to make an accurate extrapolation to correct  $P=\infty$  values
- $k_{\perp}$  effects generate a very nontrivial TMD-dependent pattern of nonperturbative evolution of the quasi-PDFs Q(y,P)
- It cannot be described by a  $\mathcal{O}(\Lambda^2/P^2)$  correction on the point-by-point basis in y-variable



## Target mass corrections

#### Pseudo-&Quasi-PDFs

• All  $(\Lambda^2/P^2)^n$  corrections come from  $\langle k_{\perp}^{2n} \rangle_{\mathcal{F}}$  moments of TMD  $F(x, k_{\perp}^2)$ 

Statement is based on the ordinary Taylor expansion. In scalar case

$$\phi(0)\phi(z) = \sum_{n=0}^{\infty} \phi(0)(z\partial)^{N}\phi(0)$$

- $\bullet$  Usual statement:  $(1/P^2)^N$  terms come from higher twists and target mass corrections (TMCs)
- $\bullet$  Expand  $(z\partial)^N$  over the combinations  $\{z\partial\}^l$  involving traceless tensor  $\{z_{\mu_1}\dots z_{\mu_n}\}$

$$\{z\partial\}^l \equiv \{z_{\mu_1} \dots z_{\mu_l}\} \partial^{\mu_1} \dots \partial^{\mu_l}$$

Obtain twist expansion. In scalar case

$$\phi(0)\phi(z) = \sum_{l=0}^{\infty} \left(\frac{z^2}{4}\right)^l \sum_{N=0}^{\infty} \frac{N+1}{l!(N+l+1)!} \phi(0) \{z\partial\}^N (\partial^2)^l \phi(0)$$

• For matrix elements, combination  $\{z\partial\}^N$  translates into

$$\{pz\}^N \equiv z_{\mu_1} \dots z_{\mu_N} \{p^{\mu_1} \dots p^{\mu_N}\}$$

- Take n = 2. Then  $\{zp\}^2 = (zp)^2 + \frac{1}{4}z^2M^2$
- Transformation to quasi-PDF converts  $z^2$  into  $1/P^2$  which gives  $M^2/P^2$  TMC

- &Quasi-PDF
- Transverse
  Momentum Cut-of
  Pseudo-PDF
  Rate of approach
- Target mass corrections
  Hard tail  $P \to \infty$  limit
  Gauge link
  Renormalization
- Evolution in lattice data

  Data

  Building MS ITE
- Summary



### Parton

Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections

 $P 
ightarrow \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

Data
Building MS IT
Results

Summary

Evident conclusion: TMCs in qPDFs are created "by hand"

• Apply twist decomposition to simplest matrix element, and define  $\langle p|\phi(0)\partial^2\phi(0)|p\rangle=\lambda^2\langle p|\phi(0)\phi(0)|p\rangle$ 

$$\langle p|\phi(0)(z\partial)^2\phi(0)|p\rangle = -\left[(zp)^2 + \frac{1}{4}z^2M^2\right]\langle x^2\rangle_f + \frac{z^2}{4}\lambda^2$$

Using expression of ME in terms of the TMD

$$\langle p|\phi(0)(z\partial)^2\phi(0)|p\rangle = -(zp)^2 \langle x^2\rangle_f + \frac{z^2}{2}\langle k_\perp^2\rangle_F$$

- This gives relation  $M^2\langle x^2\rangle_f + \lambda^2 = 2\langle k_\perp^2\rangle_{\mathcal{F}}$
- In explicit form,

$$\langle p|\phi(0)\partial^2\phi(0)|p\rangle = -M^2\int_0^1 dx\, x^2 f(x) + 2\int_0^1 dx\, \int d^2k_\perp\, k_\perp^2\, \mathcal{F}(x,k_\perp^2)$$

• Simple estimate. Take  $f(x) = 4(1-x)^3$ , then

$$\frac{M^2}{2} \int_0^1 dx \, x^2 f(x) = \frac{M^2}{30} \approx 0.03 \,\text{GeV}^2$$

- More realistic valence PDFs f(x) are singular for x=0, and integral is even smaller. For  $f(x) \sim (1-x)^3/\sqrt{x}$ , it equals to  $M^2/66 \approx 0.013\,\mathrm{GeV}^2$ 
  - For Gaussian TMD  $\langle k_\perp^2 \rangle_G = \Lambda^2 \sim$  0.1 GeV² for  $\Lambda =$  300 MeV
  - Target-mass corrections are much smaller than  $k_{\perp}$  effects  $\stackrel{?}{=}$   $\stackrel{?}{=}$

### Renormalizable theories and hard term

Pseudo-&Quasi-PDFs

• In QCD  $\mathcal{F}(x,k_{\perp}^2)$  has  $1/k_{\perp}^2$  hard part and moments  $\langle x^{n-2l}k_{\perp}^{2l}\rangle_{\mathcal{F}}$  diverge

• In the l=0 case, the divergence is logarithmic

• Reflects the perturbative evolution of quasi-PDFs Q(y, P) for large P

• Logarithmic singularity in  $z_3^2$  in coordinate representation. At one loop,

$$\mathcal{M}^{\text{hard}}(\nu, z_3^2) = -\frac{\alpha_s}{2\pi} C_F \ln(z_3^2) \int_0^1 du \, B(u) \, \mathcal{M}^{\text{soft}}(u\nu, 0)$$

Altarelli-Parisi (AP) evolution kernel

$$B(u) = \left[\frac{1+u^2}{1-u}\right]_+$$

The function  $\mathcal{M}(\nu, \nu^2/P^2)$  that generates the quasi-PDF gets

$$\mathcal{M}^{\rm hard}(\nu,\nu^2/P^2) = \, -\frac{\alpha_s}{2\pi}\, C_F \, \ln(\nu^2/P^2) \int_0^1 du \, B(u) \, \int_{-1}^1 dx \, e^{-iux\nu} \, f^{\rm soft}(x)$$

Hard part of the quasi-PDF Q(y, P) has a  $\ln P^2$  term

$$Q^{\mathrm{hard}}(y, P) = \ln(P^2) \Delta(y) + \dots$$

• It is nonzero in the  $-1 \le y \le 1$  region only

$$\Delta(y) = \frac{\alpha_s}{2\pi} C_F \int_0^1 \frac{du}{u} B(u) f^{\text{soft}}(y/u)$$

## Hard part of quasi-PDF

Pseudo-&Quasi-PDFs

Parton

Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail

 $P 
ightarrow \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

Data
Building  $\overline{MS}$  IT
Results

Summary

- $\ln z_3^2$  singularity of the ITD leads to a logarithmic perturbative evolution of the quasi-PDF Q(y,P) for large P
- lacktriangle For TMDs, the  $\ln z^2$  behavior translates into large- $k_{\perp}$  hard tail

$$\mathcal{F}^{\mathrm{hard}}(x, k_{\perp}^2) = \frac{\Delta(x)}{\pi k_{\perp}^2}$$

 $\bullet \;\; {\rm Regularizing} \; 1/k_{\perp}^2 \rightarrow 1/(k_{\perp}^2 + m^2) \; {\rm gives} \;\;$ 

$$\int_{-\infty}^{\infty} \, \frac{dk_1}{k_1^2 + (x-y)^2 P^2 + m^2} = \frac{\pi}{\sqrt{(x-y)^2 P^2 + m^2}}$$

Determines the hard part of a quasi-distribution

$$Q^{\text{hard}}(y, P) = \int_{-1}^{1} dx \frac{\Delta(x)}{\sqrt{(x-y)^2 + m^2/P^2}}$$
$$= C_F \frac{\alpha_s}{2\pi} \int_{-1}^{1} \frac{d\xi}{|\xi|} R(y/\xi, m^2/\xi^2 P^2) f^{\text{soft}}(\xi)$$

• Generating kernel  $R(\eta, m^2/P^2)$ 

$$R(\eta; m^2/P^2) = \int_0^1 du \, \frac{B(u)}{\sqrt{(\eta - u)^2 + m^2/P^2}}$$



### Structure of kernel

#### Pseudo-&Quasi-PDFs

#### Parton Densities

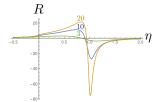
Transverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections

### Hard tail $P o \infty$

Renormalization
Reduced
pseudo-ITD

Data Building  $\overline{
m MS}$  IT

Summary



- lacktriangle Kernel for several values of P/m
- Understand m as IR cut-off  $\sim 1/R_{
  m hadr} \sim 0.5~{
  m GeV}$
- In the  $m/P \rightarrow 0$  limit

$$\left. \frac{1}{\sqrt{(x-y)^2 + m^2/P^2}} \right|_{m^2/P^2 \to 0} = \left( \frac{1}{|x-y|} \right)_+ + \delta(x-y) \ln \left[ 4y(1-y) \frac{P^2}{m^2} \right]$$

- $\delta(x-y)$  gives  $\ln P^2$  evolution in  $-1 \le y \le 1$  region
- Outside  $|\eta| < 1$  region, limit  $m/P \to 0$  is finite

$$R(\eta;0) = \int_0^1 \frac{du}{|\eta - u|} B(u)$$

• Kernel can be written as a series in  $1/\eta$ ,

$$R(\eta;0)|_{\eta>1} = -\sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}} , R(\eta;0)|_{\eta<-1} = \sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}}$$



# Kernel outside central region

Pseudo-&Quasi-PDFs

Parton

Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections

Hard tail  $P \to \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

Data Building  $\overline{MS}$  ITI Results

Summary

$$R(\eta;0)|_{\eta>1} = -\sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}} \ , \ R(\eta;0)|_{\eta<-1} = \sum_{n=1}^{\infty} \frac{\gamma_n}{\eta^{n+1}}$$

 $lackbox{ } \gamma_n$  are proportional to anomalous dimensions of operators with n derivatives

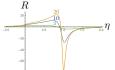
$$\gamma_n = \int_0^1 du \, u^n \, B(u)$$

•  $\gamma_0=0$ , hence the asymptotic behavior for large  $|\eta|$  is

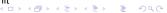
$$R(\eta;0)|_{|\eta|\gg 1} = -\frac{4}{3}\frac{\operatorname{sgn}(\eta)}{\eta^2} + \mathcal{O}(1/\eta^3)$$

• Explicit expression for m/P = 0

$$R(\eta;0)|_{\eta>1} = \frac{1+\eta^2}{\eta-1} \ln \left(\frac{\eta-1}{\eta}\right) + \frac{3}{2(\eta-1)} + 1$$



- Realistic value  $P/m \sim 3$
- Curve is very far from asymptotic shape
- Neglecting  $\alpha_s$  correction is a better approximation than using it in the m/P=0 limit





# Subtlety of $P \to \infty$ limit

Pseudo-&Quasi-PDFs

Parton

Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P o \infty$  limit

Gauge link Renormalization Reduced pseudo-ITD

Data

Building MS IT

Results

Summary

Recall the structure of the hard part

$$Q^{\text{hard}}(y, P) = \int_{-1}^{1} dx \frac{\Delta(x)}{\sqrt{(x-y)^2 + m^2/P^2}}$$
$$= C_F \frac{\alpha_s}{2\pi} \int_{-1}^{1} \frac{d\xi}{|\xi|} R(y/\xi, m^2/\xi^2 P^2) f^{\text{soft}}(\xi)$$

• Outside  $|\eta| < 1$ , the kernel has finite  $P \to \infty$  limit

$$R(\eta;0)|_{\eta>1} = \frac{1+\eta^2}{\eta-1}\ln\left(\frac{\eta-1}{\eta}\right) + \frac{3}{2(\eta-1)} + 1$$

- Even when powers of  $\Lambda^2/P^2$  may be neglected, quasi-PDFs differ from PDFs
- Shape of Q(y, P) for y > 1 is calculable (if PDF is known)
- One should see that lattice gives it, and subtract
- lacktriangle Only then one gets PDF with  $|x| \leq 1$  support

# Gauge link complications

#### Pseudo-&Quasi-PDFs

- Parton Densities
- Iransverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link
- Renormalization
  Reduced
  pseudo-ITD
- lattice data  $\begin{array}{c} \text{Data} \\ \text{Building } \overline{MS} \text{ IT} \\ \text{Results} \end{array}$
- Summary

- $\bullet$  Terms outside  $|y| \leq 1$  are generated by  $\ln z_3^2$  term
- $\bullet$  In QCD, there is one more source of the  $z^2$  -dependence of pseudo-ITD: gauge link  $\hat{E}(0,z;A)$
- It has specific ultraviolet divergences
- Use Polyakov regularization  $1/z^2 \to 1/(z^2-a^2)$  for gluon propagator in coordinate space
- Effect of the UV cut-off a is similar to that of the lattice spacing
- At one loop, link-related UV singular terms have the structure

$$\Gamma_{\rm UV}(z_3, a) \sim -\frac{\alpha_s}{2\pi} C_F \left[ 2 \frac{|z_3|}{a} \tan^{-1} \left( \frac{|z_3|}{a} \right) - 2 \ln \left( 1 + \frac{z_3^2}{a^2} \right) \right]$$

- For fixed a, these terms vanish when  $z_3 \to 0$
- No violation of quark number conservation

# Link contribution to quasi-PDFs

Pseudo-&Quasi-PDFs

Parton Densitie

Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link

Gauge link
Renormalization
Reduced
pseudo-ITD

Data
Building MS IT
Results

Summary

Addition due to UV singular terms

$$Q^{\text{UV}}(y, P) = \int_{-1}^{1} dx \, R^{\text{UV}}(y - x; a) \, f(x) \,,$$

• Kernel  $R_{\text{UV}}(y-x;a)$  is given by

$$R^{
m UV}(y-x;a) = rac{P}{2\pi} \int_{-\infty}^{\infty} dz_3 \, e^{-i(y-x)Pz_3} \, \Gamma_{
m UV}(z_3,a)$$

 $\bullet \ \ {\rm Take} \ {\rm ln}(1+z_3^2/a^2)$  "vertex" term. Its Fourier transform gives

$$R_V(y,x;Pa) \sim -\frac{1}{|y-x|}e^{-|y-x|Pa} - \delta(y-x)\int_{-\infty}^{\infty} \frac{d\zeta}{|y-\zeta|}e^{-|y-\zeta|Pa}$$

- $\bullet$  Taking a=0 gives  $\sim 1/|y-x|$  term similar to that appearing in the evolution-related kernel
- However, for a=0 the  $\zeta$  -integral accompanying the  $\delta(y-x)$  term diverges when  $\zeta\to\pm\infty$
- Need to keep nonzero a to have the exponential suppression factor that guarantees that  $R_V(y,x;Pa)$  is given by a mathematically well-defined expression

### Renormalize or exterminate?

#### Pseudo-&Quasi-PDFs

Parton Densitie

Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge limit Renormalization

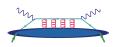
Evolution in lattice data

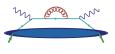
Data

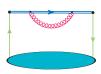
Building MS I'

Results

Summary







- Structure of factorization for DIS in Feynman gauge
- Gluon insertions generate gauge link  $\hat{E}(0,z;A)$
- Quark self-energy diagram is not factorized as  $S^c(z) \times \langle AA \rangle$
- Operator  $\bar{\psi}(0)\hat{E}(0,z;A)\psi(z)$  should be accompanied by "no AA contractions"
- Link self-energy diagrams and UV-singular parts of vertex diagrams should be excluded together with associated  $z_3^2$ -dependence
- It is not sufficient just to subtract UV divergences
- Easy way out: consider reduced pseudo-ITD

$$\mathfrak{M}(\nu,z_3^2) \equiv \frac{\mathcal{M}(\nu,z_3^2)}{\mathcal{M}(0,z_3^2)}$$

lacktriangledown  $\mathfrak{M}(
u,z_3^2)$  has finite a o 0 limit



## Reduced loffe-time pseudo-distribution

Pseudo-&Quasi-PDFs

Parton Densitie

Iransverse Momentum Cut-of Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

EVOIDITION IN lattice data

Data

Building MS IT

Results

Summary

• Reduced pseudo-ITD  $\mathfrak{M}(\nu,z_3^2)$  is a physical observable (like, say, DIS structure functions)

- No need to specify renormalization scheme, scale, etc.
- $\mathfrak{M}(\nu, z_3^2)$  is singular in  $z_3 \to 0$  limit,  $\ln z_3^2$  terms reflect perturbative evolution
- At one loop (with mass-type IR regularization)

$$\begin{split} \mathfrak{M}(\nu,z_3^2) &= \mathfrak{M}^{\mathrm{soft}}(\nu,0) - \frac{\alpha_s}{2\pi} \, C_F \int_0^1 dw \, \left\{ \frac{1+w^2}{1-w} \left[ \ln \left( z_3^2 m^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] \right. \\ &\left. + 4 \, \frac{\ln(1-w)}{1-w} \right\} \left[ \mathfrak{M}^{\mathrm{soft}}(w\nu,0) - \mathfrak{M}^{\mathrm{soft}}(\nu,0) \right] \end{split}$$

- For light-cone PDF, one should take  $z^2=0$  and use some scheme for resulting UV divergence, say,  $\overline{\rm MS}$
- In Infertime distribution  $\mathcal{I}(\nu, \mu^2)$  is UV scheme and scale dependent

$$\mathcal{I}(\nu, \mu^2) = \int_{-1}^{1} dx \, e^{ix\nu} \, f(x, \mu^2)$$

At one loop (with the same mass-type IR regularization)

$$\mathcal{I}(\nu,\mu^2) = \mathfrak{M}^{\mathrm{soft}}(\nu,0) - \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \left[ \mathfrak{M}^{\mathrm{soft}}(w\nu,0) - \mathfrak{M}^{\mathrm{soft}}(\nu,0) \right]$$

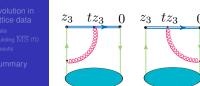
$$\times \left\{ \frac{1+w^2}{1-w} \ln(m^2/\mu^2) + 2(1-w) \right\}_{\mathbb{R}^2 \times \mathbb{R}^2}$$



Reduced nseudo-ITD Writing  $\overline{\mathrm{MS}}$  ITD in terms of reduced pseudo-ITD

$$\mathcal{I}(\nu,\mu^2) = \mathfrak{M}(\nu,z_3^2) + \frac{\alpha_s}{2\pi} C_F \int_0^1 dw \, \mathfrak{M}(w\nu,z_3^2) \\ \times \left\{ B(w) \left[ \ln \left( z_3^2 \mu^2 \frac{e^{2\gamma_E}}{4} \right) + 1 \right] + \left[ 4 \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\}$$

- Altarelli-Parisi kernel  $B(w) = \left\lceil (1+w^2)/(1-w) \right\rceil$  ,
- Multiplicative scale difference between  $z^2$  and  $\overline{\rm MS}$  cut-offs  $\mu^2=4e^{-2\gamma_E}/z_3^2$
- Simple rescaling relation is modified when all terms are taken into account



- Term with  $[\ln(1-w)]/(1-w)$  produces large negative contribution
- In Feynman gauge, it comes from vertex diagrams
- Gluon is attached to running  $tz_3$  position
- z<sub>3</sub>-dependence is generated then by



### Evolution in lattice data

Pseudo-&Quasi-PDFs

Parton Densities

Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

lattice data

Data

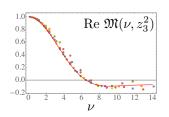
Building  $\overline{MS}$  ITI

Results

Gummary

- Exploratory lattice study of reduced pseudo-ITD  $\mathfrak{M}(\nu,z_3^2)$  for the valence  $u_v-d_v$  parton distribution in the nucleon [Orginos et al. 2017]
- ullet When plotted as function of u, data both for real and imaginary parts lie close to respective universal curves
- Data show no polynomial  $z_3$ -dependence for large  $z_3$  though  $z_3^2/a^2$  changes from 1 to  $\sim 200$
- Apparently no higher-twist terms in the reduced pseudo-ITD
- $\bullet$  Real part corresponds to the cosine Fourier transform of  $q_v(x)=u_v(x)-d_v(x)$

$$\Re(\nu) \equiv \operatorname{Re} \mathfrak{M}(\nu) = \int_0^1 dx \, \cos(\nu x) \, q_v(x)$$



Overall curve corresponds to the function

$$f(x) = \frac{315}{32}\sqrt{x}(1-x)^3$$

- Obtained by forming cosine Fourier transforms of  $x^a(1-x)^b$ -type functions and fitting a,b
- Shape is dominated by points with smaller values of Re  $\mathfrak{M}(\nu,z_3^2)$

### Evolution in lattice data, cont.

#### Pseudo-&Quasi-PDFs

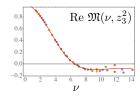
Parton Densities Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link Renormalization

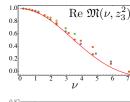
lattice data

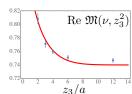
Data

Building MS IT

Summar







- Points corresponding to  $7a \le z_3 \le 13a$  values
- Some scatter for points with  $u\gtrsim 10$
- Otherwise, practically all the points lie on the universal curve based on f(x).
- No  $z_3$ -evolution visible in large- $z_3$  data
- Points in  $a \le z_3 \le 6a$  region
- All points lie higher than universal curve
- lacktriangle Perturbative evolution increases real part of the pseudo-ITD when  $z_3$  decreases
- $z_3$ -dependence of the lattice points for "magic" loffe-time value  $\nu=3\pi/4$
- Shape of eye-ball fit line is  $\Gamma(0, z_3^2/30a^2)$
- "Perturbative"  $\ln(1/z_3^2)$  behavior for small  $z_3$ , rapidly vanishes for  $z_3 > 6a$
- $\Re(\nu, z_3^2)$  decreases when  $z_3$  increases



# Building MS ITD

Pseudo-&Quasi-PDFs

Parton Densities

ransverse Momentum Cut-ol Pseudo-PDF Rate of approach Target mass corrections Hard tall  $P \to \infty$  limit Gauge link Renormalization Reduced pseudo-ITD

Summary

lacktriangle Data show a logarithmic evolution behavior in small  $z_3$  region

• Starts to visibly deviate from a pure logarithmic  $\ln z_3^2$  pattern for  $z_3 \gtrsim 5a$ 

• This sets the boundary  $z_3 \leq 4a$  on the "logarithmic region"

"Evolution" part of 1-loop correction

$$\mathcal{I}_{R}^{\mathrm{ev}}(\nu,\mu^{2}) = \Re(\nu,z_{3}^{2}) + \frac{\alpha_{s}}{2\pi} \, C_{F} \, \int_{0}^{1} dw \, \Re(w\nu,z_{3}^{2}) B(w) \, \ln\left(z_{3}^{2}\mu^{2} \frac{e^{2\gamma_{E}}}{4}\right)$$

• For  $z_3=2e^{-\gamma_E}/\mu$ , the logarithm vanishes, and we have

$$\mathcal{I}_R^{\mathrm{ev}}(\nu,\mu^2) = \Re(\nu,(2e^{-\gamma_E}/\mu)^2) = \Re(\nu,(1.12/\mu)^2)$$

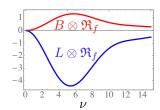
- This happens only if, for some  $\alpha_s$ , the  $\ln z_3^2$ -dependence of the1-loop term cancels actual  $z_3^2$ -dependence of the data, visible as scatter in the data
- Fitted value:  $\alpha_s/\pi \approx 0.1$
- $\bullet$  Remaining part of  $\mathcal{I}(\nu,\mu^2)$  is due to corrections beyond the leading log approximation

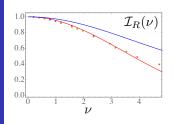
$$\begin{split} \mathcal{I}_R^{\rm NL}(\nu) = & \frac{\alpha_s}{2\pi} \, C_F \, \int_0^1 dw \, \mathfrak{R}_f(w\nu) \left\{ B(w) \, + \left[ 4 \, \frac{\ln(1-w)}{1-w} - 2(1-w) \right]_+ \right\} \\ \equiv & \frac{\alpha_s}{2\pi} \, C_F \, \left[ B \otimes \mathfrak{R}_f + L \otimes \mathfrak{R}_f \right] \end{split}$$

Parton
Densities
Transverse
Momentum Cut-off
Pseudo-PDF
Rate of approach
Target mass
corrections
Hard tail
P → ∞ limit
Gauge link
Renormalization

EVOLUTION IN lattice data Data Building  $\overline{
m MS}$  ITI Results

Summary





- $L \otimes \mathfrak{R}_f$  is negative and rather large
- In  $\nu < 5$  region,  $L \otimes \mathfrak{R}_f \approx -3.5B \otimes \mathfrak{R}_v$
- Combined effect is close to LLA evolution with modified rescaling factor

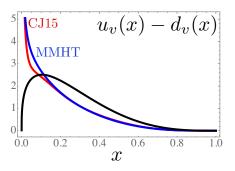
$$\mathcal{I}_R(\nu,\mu^2) \approx \Re(\nu,(4/\mu)^2)$$

- Actual calculations should be done using "exact" formula
- We choose  $\mu=1/a$  which, at lattice spacing of 0.093 fm is  $\approx$  2.15 GeV
- Using  $\alpha_s/\pi=0.1$  and  $z_3\leq 4a$  data, we generate the points for  $\mathcal{I}_R(\nu,(1/a)^2)$
- Upper curve corresponds to the ITD of the CJ15 global fit PDF for  $\mu$  =2.15 GeV
- Evolved points are close to some universal curve with a rather small scatter
- The curve itself corresponds to the cosine transform of a normalized  $\sim x^a (1-x)^b$  distribution with a=0.35 and b=3





Results



- $\bullet \sim x^{0.35}(1-x)^3$  PDF compared to CJ15 and MMHT global fits for  $\mu = 2.15 \text{ GeV}$
- Unable to reproduce  $\sim x^{-0.5}$  Regge behavior
- Possible reasons: quenched approximation, large pion mass

# Summary

#### Pseudo-&Quasi-PDFs

Parton Densities Transverse Momentum Cut-off Pseudo-PDF Rate of approach Target mass corrections Hard tail  $P \to \infty$  limit Gauge link Renormalization Reduced Pseudo-ITD

Evolution in lattice data

Data

Building  $\overline{MS}$  ITI

Results

Summary

- $\bullet$  Analyzed nonperturbative structure of quasi-PDFs Q(y,P) using their relation to pseudo-ITDs and TMDs
- $\bullet \ \$  Shown that  $(\Lambda^2/P^2)^n$  expansion for Q(y,P) involves generalized functions
- Using factorized models for TMDs, studied rate of approach of quasi-PDFs Q(y,P) to PDFs f(y) when  $P\to\infty$
- $\bullet$  Demonstrated that target-mass corrections are a small part of  $k_\perp^2$  corrections artificially singled out from them
- Analyzed perturbative structure of quasi-PDFs using their relation to pseudo-ITDs and TMDs
- lacktriangle Shown that evolution  $\log \ln z_3^2$  gives  $\sim 1/y^2$  behavior of qPDFs for large y
- ullet  $\sim 1/y$  terms come from UV singular link-related terms
- Argued that link-related terms should be "exterminated"
- Proposed to use reduced pseudo-ITD
- Studied evolution of exploratory lattice data for reduced pseudo-ITD