Quasi-PDF with non-perturbative renormalization

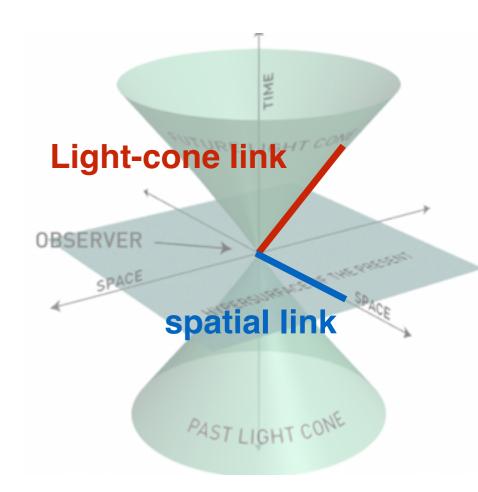
Yi-Bo Yang Michigan state university

For Lattice PDF workshop at U. Maryland

Definition of the quasi-PDF

The original quark PDF defined in the light front frame is,

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{-ix\xi^- P^+} \langle P | \overline{\psi}(\xi^-) \gamma^+ \times \exp\left(-ig \int_0^{\xi^-} d\eta^- A^+(\eta^-)\right) \psi(0) | P \rangle$$



The quasi-PDF is defined by

$$\tilde{q}(x,P_z,\tilde{\mu})_{\Gamma} = \int_{-\infty}^{\infty} \frac{dz}{2\pi} \; e^{ixP_zz} \big\langle P \big| O_{\Gamma}(z) \big| P \big\rangle$$

$$O_{\Gamma}(z) = \bar{\psi}(z)\Gamma U(z,0)\psi(0)$$

$$U(z,0) = P\exp\left(-ig\int_0^z dz' A^z(z')\right)$$

$$\Gamma = \gamma_z \text{ or } \gamma_t \longleftarrow$$
 Modified definition

X.D. Ji, PRL 110 (2013) 262002 X. Xiong, X. Ji, J.-H. Zhang, and Y. Zhao, PRD 90 (2014) 014051

Original definition

From the bare quasi-PDF

to the real PDF

Y-Q. Ma, J-W. Qiu, 1404.6860 C. Alexandrou et. al., Phys. Rev. D92 014502 J.-W. Chen, X. Ji, J. Zhang, Nucl. Phys. B915 (2017) 1 LP³, 1803.04393

$$q(x,\mu) = \int_{-\infty}^{\infty} \frac{dy}{|y|} \left\{ \delta(1 - \frac{x}{y}) - \frac{\alpha_s C_F}{2\pi} \left[f_1 \left(\frac{x}{y}, \frac{y P_z}{\mu} \right) - \frac{y P_z}{p_z^R} f_2 (1 + \frac{y P_z}{p_z^R} (\frac{x}{y} - 1), \frac{\mu_R^2}{p_z^R}) \right] \right\}$$

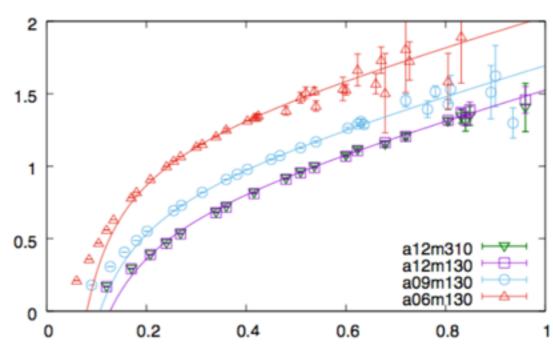
$$\int_{-\infty}^{\infty} e^{iy P_z z} \langle P | \bar{\psi}(z) \gamma_t U_z(z, 0) \psi(0) | P \rangle_{p^2 = \mu_R^2, p_z = p_z^R}^{R}$$

$$+\mathcal{O}\left(rac{M^2}{P_z^2},rac{\Lambda_{ ext{QCD}}^2}{P_z^2},lpha_s^2
ight).$$

 $+\mathcal{O}\left(\frac{M^2}{P_z^2},\frac{\Lambda_{\rm QCD}^2}{P_z^2},\alpha_s^2\right).$ The linear divergence under the lattice regularization can break down the power counting!

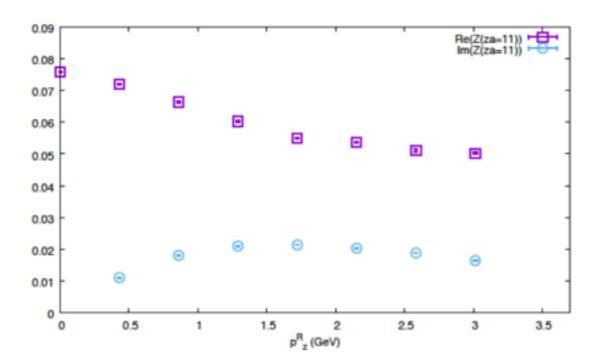
$$\langle P|\bar{\psi}(z)\gamma_t U_z(z,0)\psi(0)|P\rangle^R = \left(1 + \frac{\alpha_s}{4\pi}(\frac{C}{a} + \text{Log}(\mu_R^2 a^2) + ...) + \mathcal{O}\left(\alpha_s^2\right)\right)\langle P|\bar{\psi}(z)\gamma_t U_z(z,0)\psi(0)|P\rangle_{bare}$$

Outline



 Linear divergence (LD) in the wilson loop and quasi-PDF operator

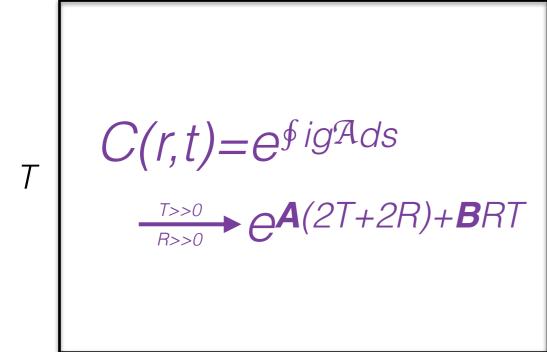
The external momentum dependence of RI/MOM



Linear divergence (LD)

R

in the wilson loop

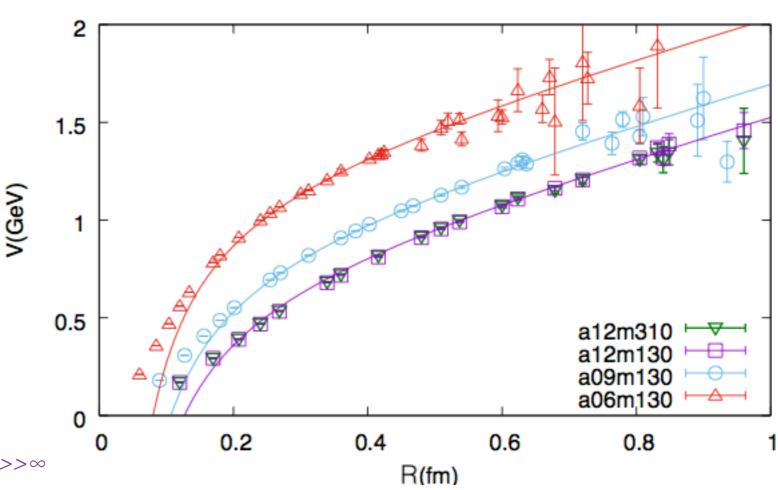


The statical potential is defined by,

$$V(R) = Log[\langle C(R,T) \rangle / \langle C(R,T+1) \rangle]|_{T \to \infty, R > \infty}$$
$$= \alpha / R + 2\mathbf{A} + \mathbf{B}R,$$

with

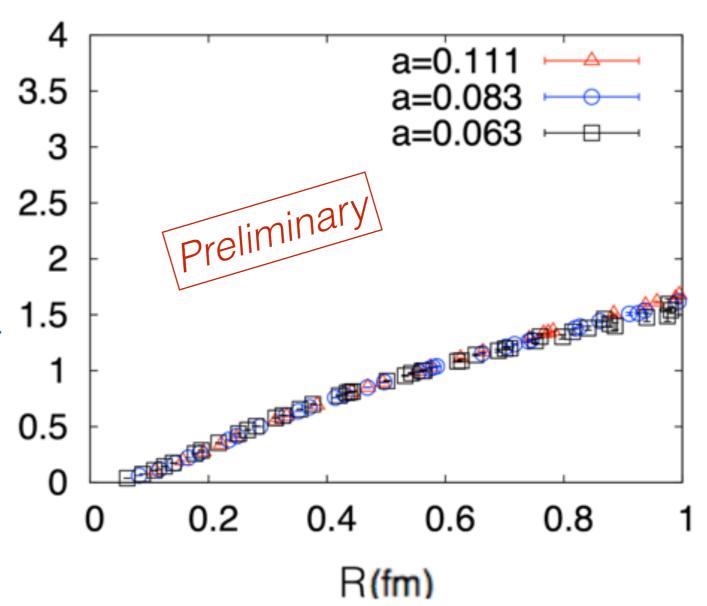
 $A \sim \Delta m/a + A_0$



We can see V(R) shifts vertically when the lattice spacing a becomes smaller, and a joint fit get Δm=0.154(2).

Gradient flow?

- With the same t (Sqrt[1/t] ~ 3.3 GeV) the statical potential with different lattice spacings are almost the same.
- The effective δm can be smaller or even negative with even lower Sqrt[1/t].
- But the matching in the continuum will be highly nontrivial.



Non-perturbative

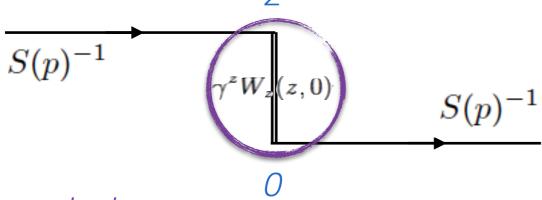
renormalization (NPR)

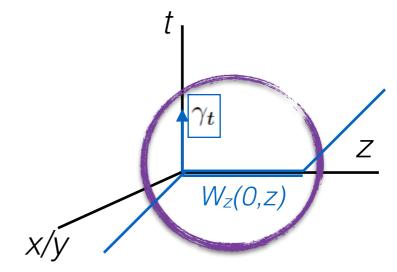
The non-perturbative renormalized quasi-PDF matrix element $\tilde{\mathbf{h}}^{\mathbf{R}}$ in the RI/MOM scheme is defined by

$$\tilde{h}^{R}(z, P_{z}, p_{z}^{R}, \mu_{R}) = \tilde{Z}^{-1}(z, p_{z}^{R}, a^{-1}, \mu_{R}) \tilde{h}(z, P_{z}, a^{-1}) \Big|_{a \to 0}$$

where $\tilde{h}(z, P_z, a^{-1}) = \frac{1}{2P^0} \langle P|O_{\gamma_t}(z)|P\rangle$ is the lattice bare quasi-PDF matrix elements.

To get Z, we project the dressed vertex function,





$$p=(p_t^R,p_\perp^R,p_z^R)$$
 with $p^2=\mu_R^2$

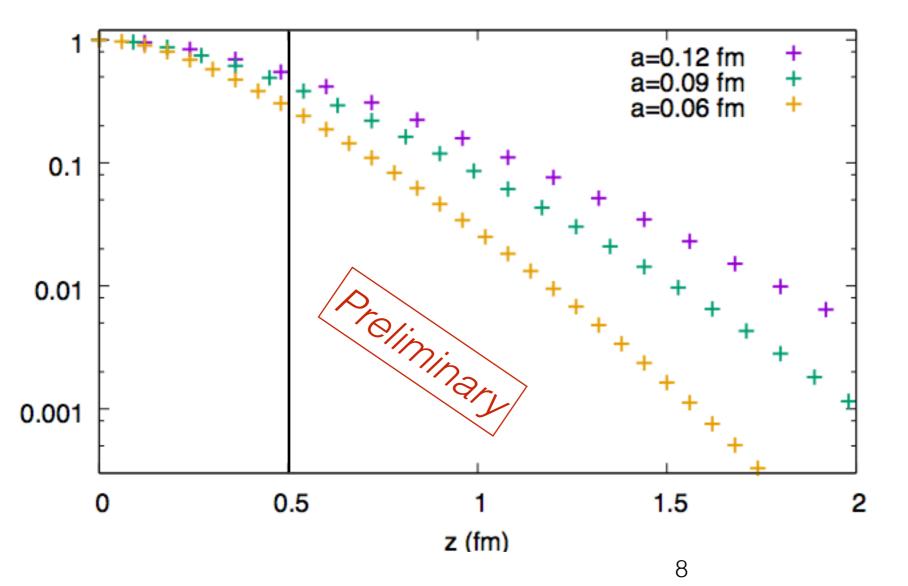
by p-slash:

Linear divergence (LD)

based on the NPR

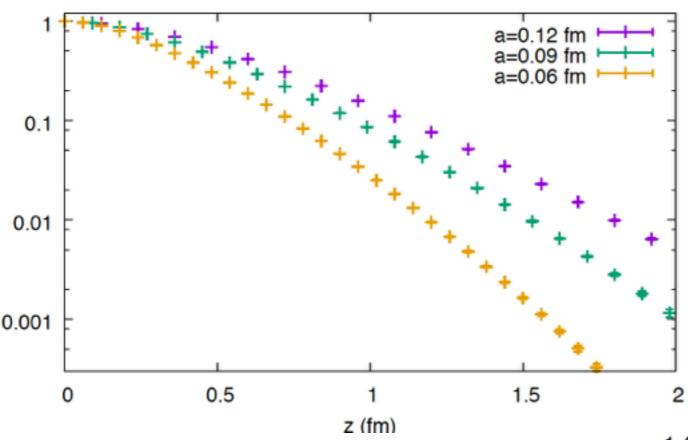
$$\begin{split} \tilde{Z}(z, p_z^R, a^{-1}, \mu_R) \\ &= \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \bigg|_{\substack{p^2 = -\mu_R^2 \\ p_z = p_z^R}} \end{split}$$

is purely **real** when p_z^R is **zero**.



- $h_R = h_{bare}/Z$;
- With a=0.06 fm and z~0.5 fm, Z~0.3;
- The linear divergence should be **resumed** to describe the Z from non-perturbative renormalization (NPR).

Linear divergence (LD)



based on the NPR

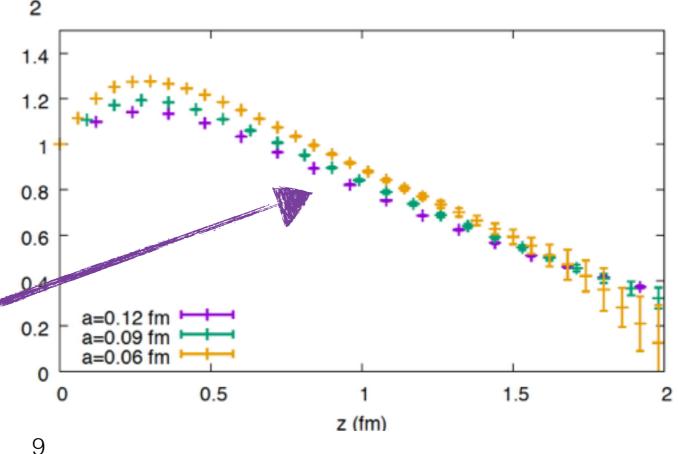
Fit in the range z=(0.45, 1.5) fm, we can get the linear divergence terms as

e(-0.136(2)z+0.011(2)z²-0.083(4)z³)/a

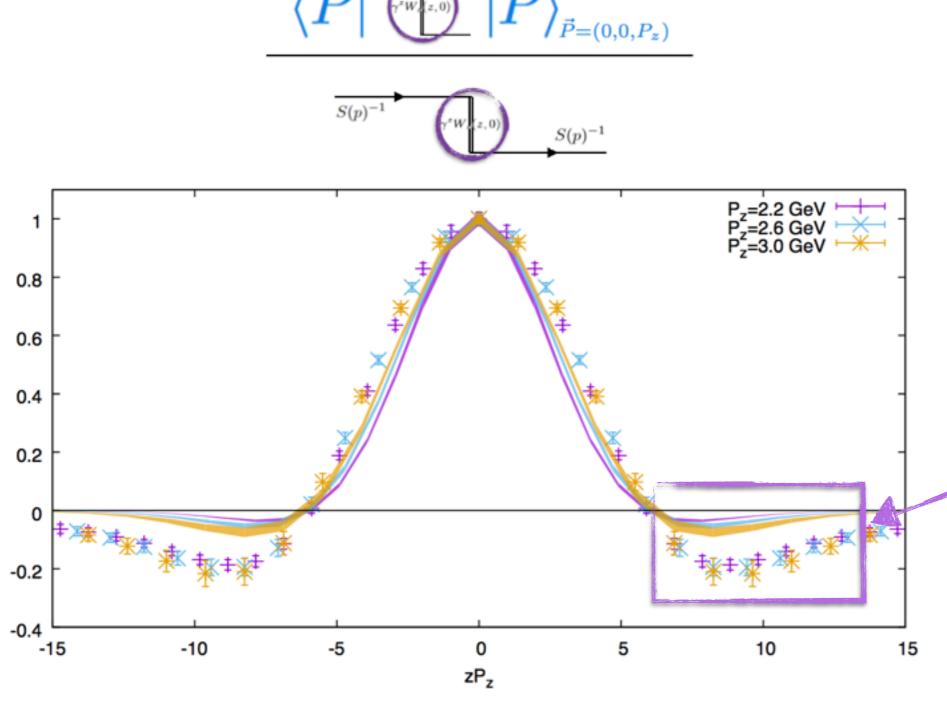
with $\chi^2/d.o.f.<1$.

Preliminary

- We got Δm=0.154(2) from the wilson loop;
- The small z limit of the linear divergence from the quasi-PDF operator is 0.136(2).
- The renormalization constants are O(1) after the LDs are removed.



The renormalization effect



- Curves show the bare results.
- **Data points** shows the renormalized ones with $p_z^R = 0$.
- The renormalization enlarged the MEs much at the long tails of z.

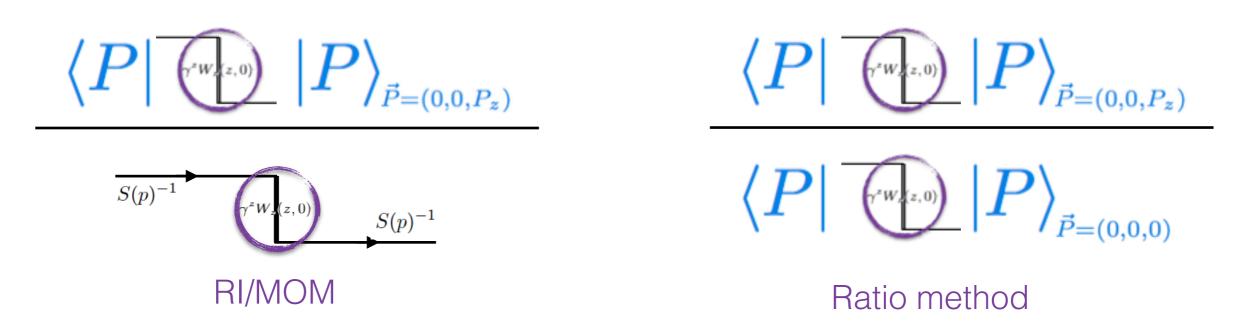
Another way

to remove the linear divergence

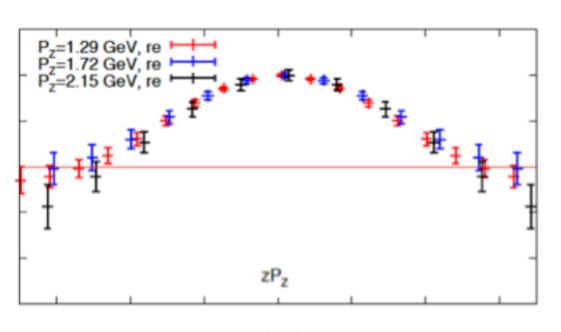
- No matter the hadron is in the moving frame or rest frame, the operator used by $\tilde{h}(z, P_z)$ and $\tilde{h}(z, 0)$ are the same.
- So by taking the ratio $\tilde{h}(z, P_z)/\tilde{h}(z, 0)$, the linear divergence will be canceled.

A.V. Radyushkin, 1705.01488

- It is similar to the idea of RI/MOM renormalization, while using the hadron matrix element instead of the quark one to canceled the linear divergence.
- The matching needed to connect ħ(z, P_z)/ħ(z,0) to PDF will be different from the quasi-PDF case, but it can be done.
 T. Izubuchi, et.al, 1801.03917

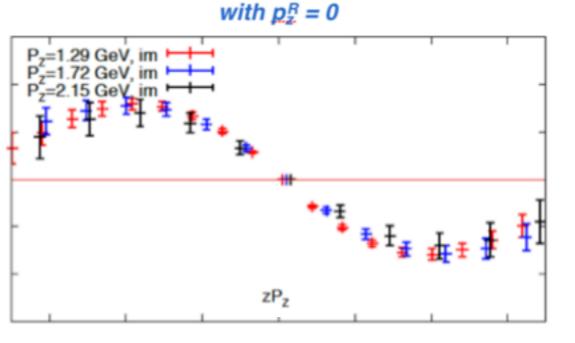


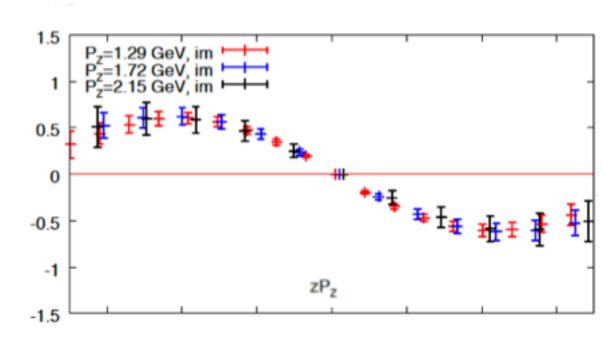
Another way



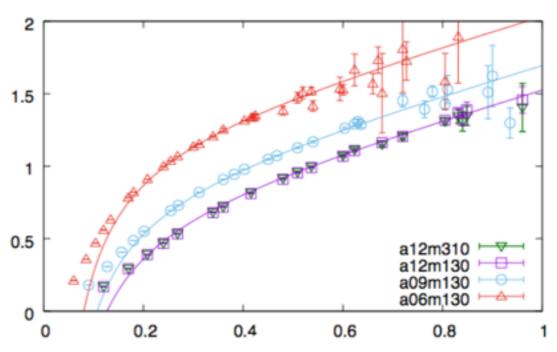
RI/MOM renormalized

The results are very close to each other. $\tilde{h}(z, P_z)/\tilde{h}(z, 0)$



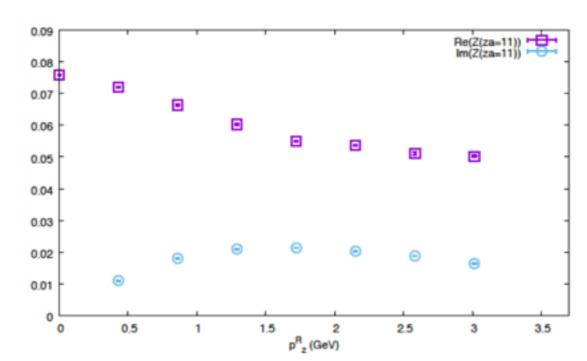


Outline



 Linear divergence (LD) in the wilson loop and quasi-PDF operator

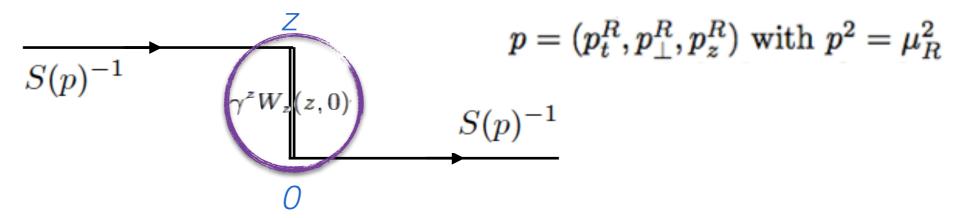
The external momentum dependence of RI/MOM



External momentum

dependence

To get Z, we project the dressed vertex function,



by p-slash:

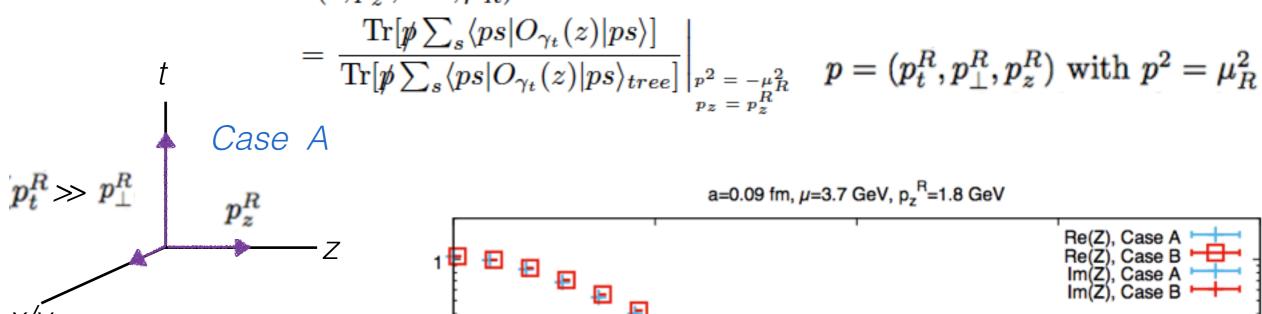
→ the renormalization constant

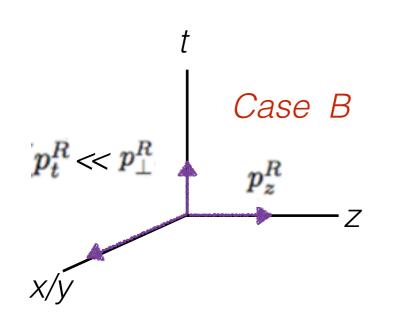
$$\begin{split} &\tilde{Z}(z, p_z^R, a^{-1}, \mu_R) \\ &= \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \bigg|_{\substack{p^2 = -\mu_R^2 \\ p_z = p_z^R}} \end{split}$$

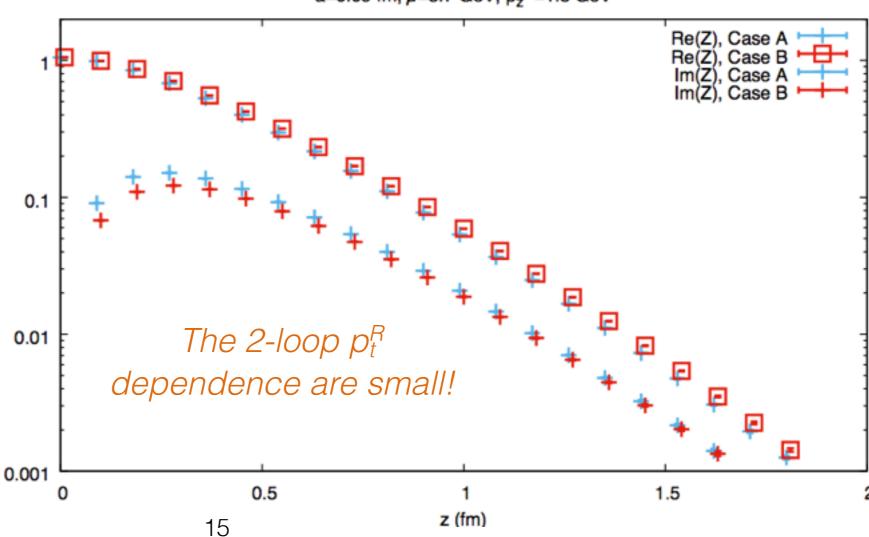
- z direction is special since the wilson link is along z; so p_z^R dependence starts from 1-loop level.
- Even though Z is independent to p^R_t at 1-loop level, p^R_t dependence would still exist at 2-loop level since the gamma matrix is along t;
- At 1-loop level, μ_R dependences will be in the log(a²p²) term, but also in the finite pieces through a ratio (μ_R/p_t^R)²;

dependence

of the RI/MOM constants $\tilde{Z}(z, p_z^R, a^{-1}, \mu_R)$



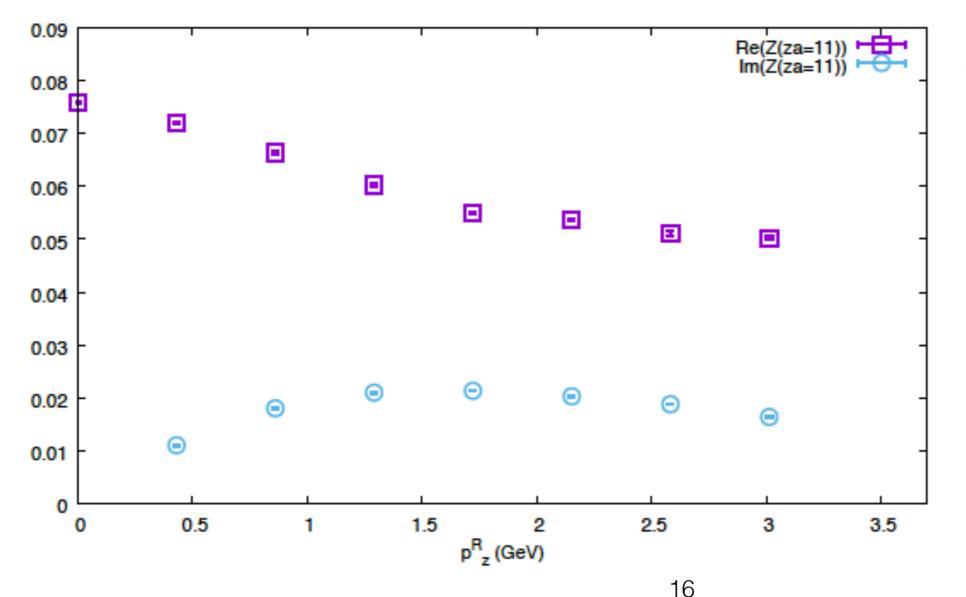




p_z^R dependence

$\tilde{Z}(z, p_z^R, a^{-1}, \mu_R)$ of the RI/MOM constants

$$= \left. \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \right|_{p^2 = -\mu_R^2 \atop p_z = p_z^R} \quad p = (p_t^R, p_\perp^R, p_z^R) \text{ with } p^2 = \mu_R^2$$

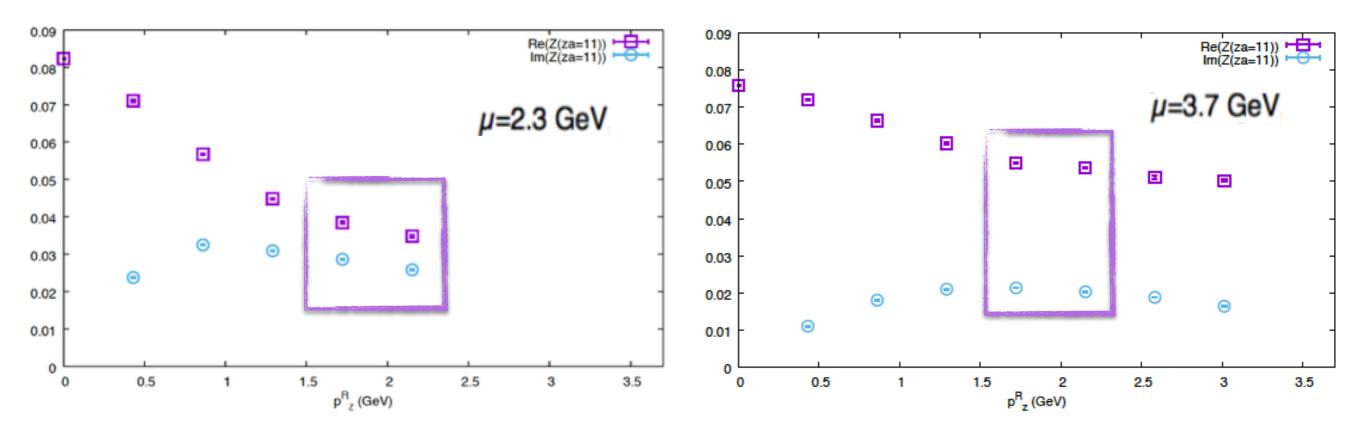


- Consider the z~1fm case as an example
- μ~3.7 GeV. p_z^R ~ 0.0,
 0.4, 0.9, 1.3, 1.7, 2.2,
 2.6. 3.0 GeV
- Strong p_Z^R dependence
 at small p_Z^R, while
 somehow flat at large
 p_Z^R.

ur dependence

of the RI/MOM constants

$$\begin{split} &\tilde{Z}(z, p_z^R, a^{-1}, \mu_R) \\ &= \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \bigg|_{\substack{p^2 = -\mu_R^2 \\ p_z = p_z^R}} \quad p = (p_t^R, p_\perp^R, p_z^R) \text{ with } p^2 = \mu_R^2 \end{split}$$



- The μ dependence with $p_z^R = 0$ is a few percents (purely in the log term);
- But the μ dependence are much stronger when p_z^R is larger.

The cancellation

$$\begin{split} \tilde{Z}(z,p_z^R,a^{-1},\mu_R) & \text{from the matching} \\ &= \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \Big|_{\substack{p^2 = -\mu_R^2 \\ p_z = p_z^R}} & p = (p_t^R,p_\perp^R,p_z^R) \text{ with } p^2 = \mu_R^2 \end{split}$$

$$\langle P|\bar{\psi}(z)\gamma_t U_z(z,0)\psi(0)|P\rangle^R = \frac{\langle P|\bar{\psi}(z)\gamma_t U_z(z,0)\psi(0)|P\rangle_{bare}}{\tilde{Z}(z,p_z^R,a^{-1},\mu_R)}$$

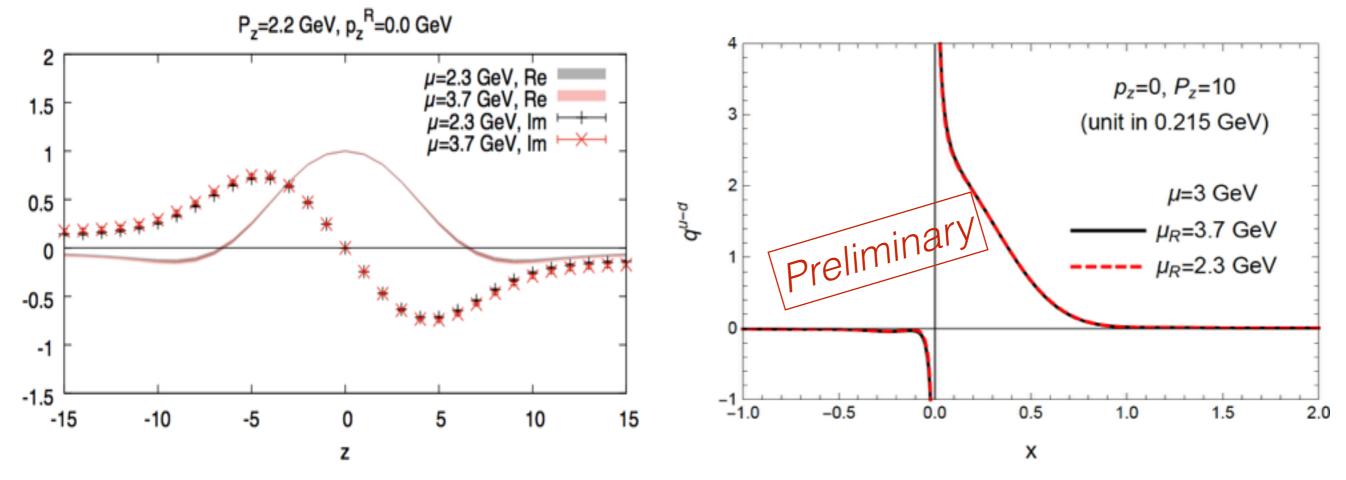
$$\begin{split} q(x,\mu) \; &= \; \int_{-\infty}^{\infty} \frac{dy}{|y|} \left\{ \delta(1-\frac{x}{y}) - \frac{\alpha_s C_F}{2\pi} \left[f_1 \left(\frac{x}{y}, \frac{y P_z}{\mu} \right) - \frac{y P_z}{p_z^R} f_2 (1 + \frac{y P_z}{p_z^R} (\frac{x}{y} - 1), \frac{\mu_R^2}{p_z^{R^2}}) \right] \right\} \\ & \int_{-\infty}^{\infty} e^{iy P_z z} \langle P | \bar{\psi}(z) \gamma_t U_z(z,0) \psi(0) | P \rangle_{p^2 = \mu_R^2, p_z = p_z^R}^R \\ & + \mathcal{O} \left(\frac{M^2}{P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{P_z^2}, \alpha_s^2 \right). \end{split}$$

- The μ_R and p_Z^R dependence should be cancelled with the matching in the continuum;
- But 1-loop matching may not be good enough to reach the goal.

Ζ

The result after matching

$$\begin{split} & \sum_{Z(z,\,p_z^R,\,a^{-1},\,\mu_R)}^{R} = 0 \quad \text{Case} \\ & = \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \bigg|_{\substack{p^2 = -\mu_R^2 \\ p_z = p_z^R}} \quad p = (p_t^R, p_\perp^R, p_z^R) \text{ with } p^2 = \mu_R^2 \end{split}$$



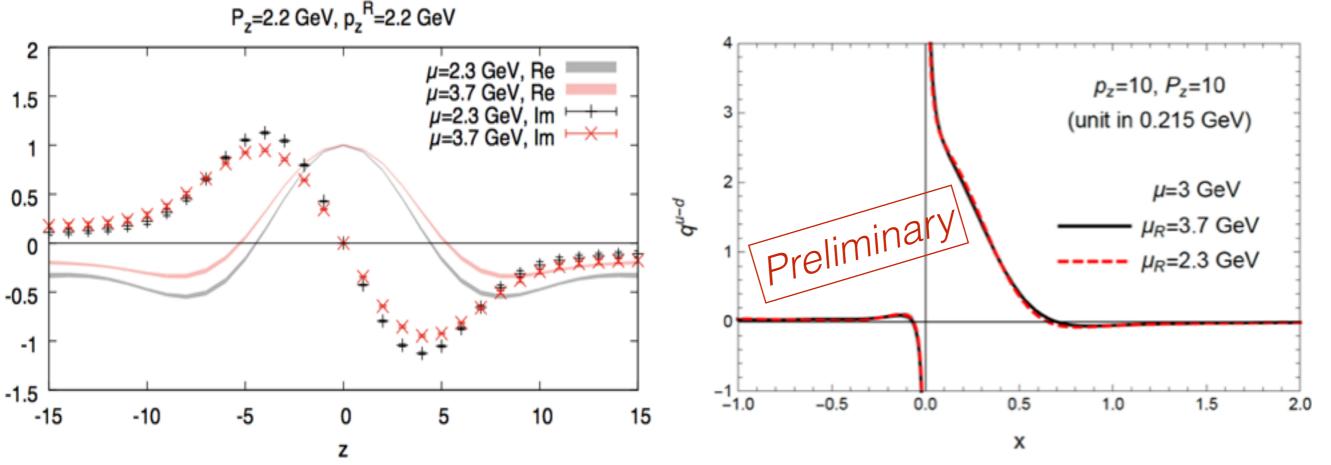
- Some small μ_R dependence at large z;
- And the final result with different μ_R are also almost the same.

The result after matching

$$\begin{split} &\tilde{Z}(z,p_z^R,a^{-1},\mu_R) & \rho_Z - Z.Z \text{ GeV COSE} \\ &= \frac{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle]}{\text{Tr}[\not p \sum_s \langle ps|O_{\gamma_t}(z)|ps\rangle_{tree}]} \Big|_{\substack{p^2 = -\mu_R^2 \\ p_z = p_z^R}} & p = (p_t^R,p_\perp^R,p_z^R) \text{ with } p^2 = \mu_R^2 \end{split}$$

$$p_z^R = 2.2$$
 GeV case

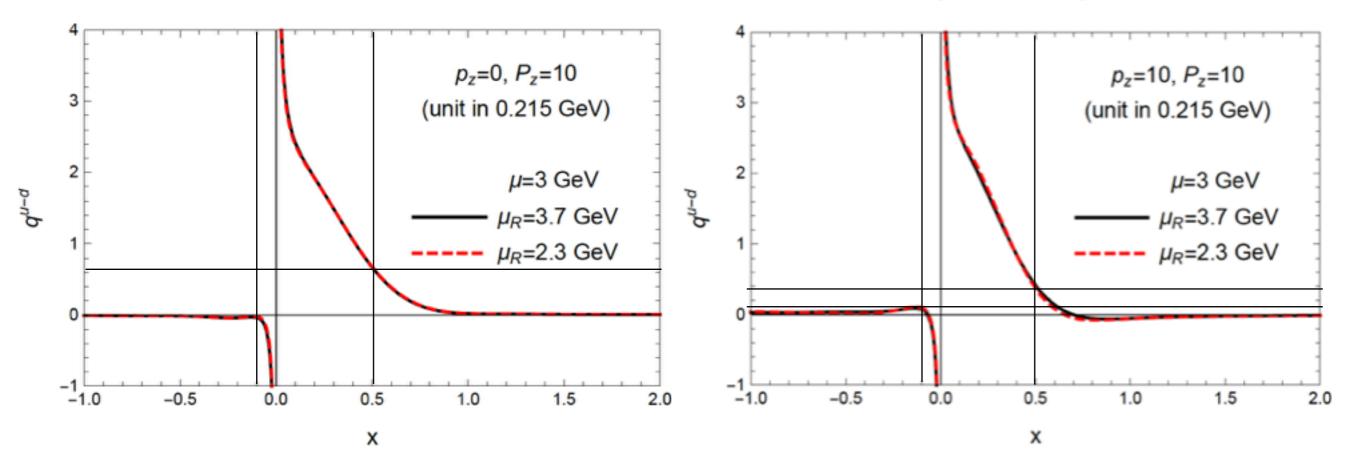
$$p=(p_t^R,p_\perp^R,p_z^R)$$
 with $p^2=\mu_R^2$



- Obvious μ_R dependence when p_7^R is large;
- But the final result are still almost independent to μ_R !

The result after matching

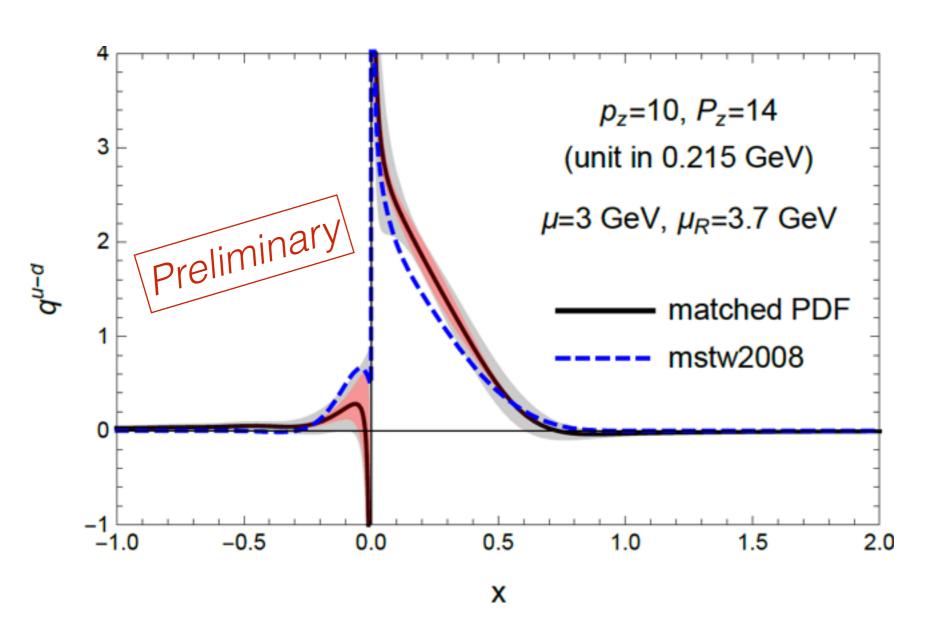
Residual p_z^R dependence



• Large p_z^R makes the positive x to be lower and the negative x to be higher.

The final prediction

with systematic uncertainties



- The red error bar shows the statistical errors.
- The gray error bar shows the total uncertainties including the systematic uncertainties:
- 1. Higer-twist corrections;
- 2. Truncation errors;
- 3. Dependence on the RI/
 MOM scheme
 parameters p_z^R and µ_R;
- 4. Matching-inversematching mismatch effects.

Summary

- The central problem of the bare quasi-PDF matrix element is the linear divergence from the wilson links;
- The linear divergence can be removed by applying the Wilson link counter term from Wilson loop, using the RI/MOM scheme, or forming a ratio of the matrix elements with different hadron momenta.
- Most of the RI/MOM parameter dependence can be cancelled, while the cancellation on p_z^R will need the perturbative calculation at higher loop level.