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1. Introduction

• Basics
• Lattice techniques
• Excited states
• Computational costs
• Procedure

2. Results

• Bare ME
• Renormalized ME
• Matching
• Final result
• Comparison of physical

and non-physical mπ

3. Conclusions and prospects

Based on:

• C. Alexandrou, K. Cichy, M. Constantinou, K. Jansen,
A. Scapellato, F. Steffens, “Reconstruction of light-cone
parton distribution functions from lattice QCD simulations
at the physical point”, arXiv: 1803.02685 [hep-lat]

• C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyian-
nakou, K. Jansen, H. Panagopoulos, F. Steffens, “A
complete non-perturbative renormalization prescription for
quasi-PDFs”, Nucl. Phys. B923 (2017) 394-415 (Frontiers
Article)

• M. Constantinou, H. Panagopoulos, “Perturbative Renor-
malization of quasi-PDFs”, Phys. Rev. D96 (2017) 054506

• C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyian-
nakou, K. Jansen, F. Steffens, C. Wiese, “Updated Lattice
Results for Parton Distributions”, Phys. Rev. D96 (2017)
014513

• C. Alexandrou, K. Cichy, V. Drach, E. Garcia-Ramos,
K. Hadjiyiannakou, K. Jansen, F. Steffens, C. Wiese, “A
Lattice Calculation of Parton Distributions”, Phys. Rev.
D92 (2015) 014502



Introduction

Outline of the talk

Introduction

PDFs

Moments

Quasi-PDFs

Lattice setup

TM fermions
Momentum
smearing

Computation setup

Excited states

Cost

Momenta

Statistics

Procedure

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Maryland – 07.04.2018 – 3 / 45



PDFs – why is it difficult on the lattice?
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• Hadrons are complicated systems with properties resulting from
the strong dynamics of quarks and gluons inside them.

• This dynamics is characterized in terms of, among others, parton
distribution functions (PDFs).

• PDFs are essential in making predictions for collider expriments.

• PDFs have non-perturbative nature ⇒ LATTICE?

• But: PDFs given in terms of non-local light-cone correlators –
intrinsically Minkowskian – problem for the lattice!

q(x) =
1

2π

∫

dξ−e−ixp+ξ−〈N |ψ(ξ−)ΓA(ξ−, 0)ψ(0)|N〉,

where: ξ− = ξ0−ξ3√
2

and A(ξ−, 0) is the Wilson line from 0 to ξ−.

• This expression is light-cone dominated – needs ξ2 = ~x2 + t2 ∼ 0
– very hard due to non-zero lattice spacing!

• Accessible on the lattice – moments of the distributions, but . . .
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• Moments of PDFs are defined via matrix elements of local operators:

∫

dxxn−1q(x) = 〈N |O{µ1...µn}|N〉,

with: O{µ1...µn} = ψ̄
(

γ{µ1i
←→
D µ2 . . . i

←→
D µn}

) τa

2
ψ.

• Example – isovector quark momentum
fraction (q(x) = u(x)− d(x)):

〈x〉u−d =

∫

dxx (q(x) + q̄(x)) .

• However, higher moments are difficult for
technical reasons:

⋆ higher derivatives noisy,

⋆ operator mixing. ETMC, C. Alexandrou et al., 1509.04936

See also slides by André
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There is, however, an important lesson to be learned from moments calculations:
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• source-sink separation Ts has to be at
least 1 fm!

• simultaneous fits to different Ts make
sense only if one can get the safe=large
Ts with similar precision as the lower ones

• else, the simultaneous fit is certainly
dominated by the lower Ts
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• Quasi-PDF approach:
X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

• Compute a quasi distribution q̃, which is purely spatial and uses nucleons with
finite momentum:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

• z – distance in any spatial direction z,

• P3 – momentum boost in this direction.

• e.g. Γ = γ0, γ3 – unpolarized, Γ = γ5γ3 – helicity

• Theoretically very appealing and intuitive!

• Differs from light-front PDFs by O

(

Λ2
QCD

P 2
3

,
m2

N

P 2
3

)

.

• The highly non-trivial aspect:
how to relate q̃(x, µ2, P3) to the light-front PDF
q(x, µ2) (infinite momentum frame)
=⇒ LaMET
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Beautiful idea and solid theoretical framework!

BUT: lattice realization far from trivial!

• Signal for the relevant nucleon 2-pt and 3-pt function depends on:

⋆ nucleon momentum P3 – exponentially decaying with P3!
⋆ source-sink separation Ts – exponentially decaying with Ts!
⋆ quark mass – worsens for smaller masses.

• Many systematics to control!

HENCE: Choice of the pairs (Ts, P3) is crucial!
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• fermions: Nf = 2 twisted mass fermions + clover term

• gluons: Iwasaki gauge action, β = 2.1

β=2.10, cSW=1.57751, a=0.0938(3)(2) fm

483 × 96 aµ = 0.0009 mN = 0.932(4) GeV

L = 4.5 fm mπ = 0.1304(4) GeV mπL = 2.98(1)
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The Wilson twisted mass fermion action for the 2 light (u, d quarks) is given in the
so-called twisted basis by: [R. Frezzotti, P. Grassi, G.C. Rossi, S. Sint, P. Weisz, 2000-2004]

Sl[ψ, ψ̄, U ] = a4
∑

x

χ̄l(x)
(

DW +m0,l + iµlγ5τ3
)

χl(x),

• DW – Wilson-Dirac operator,

• m0,l and µl – bare untwisted and twisted light quark masses,

• χl = (χu, χd) – 2-component vector in flavor space; chiral rotation of standard
one: ψ = eiγ5τ3ω/2χ

• Maximal twist: ω = π/2 by tuning the PCAC mass to zero ⇒ automatic
O(a)-improvement.
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Smomψ(x) =
1

1 + 6α



ψ(x) + α
±3
∑

j=±1

Uj(x)e
iξĵψ(x+ ĵ)





G. Bali et al., Phys. Rev. D93, 094515 (2016)

0 2 4 6 8

�✁✂

10 -1

10 0

✄
☎

✆✝
✞
✟✠

☎
☎

✡
✡
☛

✡
☛

☞
✌

✍✎
✏ ✑

✒✓

✔ ✕ ✖

✔ ✕ ✖✗✘✙

✔ ✕ ✖✗✚

✔ ✕ ✖✗✛✙

✔ ✕ ✖✗✜

✔ ✕ ✖✗✢✙

2 4 6 8 10

�✁✂

0

0.5

1

1.5

2

✄
☎

✆✝
✝

✞✟✠✡☛☞✞ ☛✞☛✌✍✎ ✏✑ ✒ ✓ ✔✕✖✗

✘✙ ✚✙✚✛✘✜✢✚ ✣✚✛✤✥✦✘✧

★ ✩ ✪✫✬✭

★ ✩ ✪✫✮

50 iterations of (Gaussian) momentum smearing, α = 4



Computation setup

Outline of the talk

Introduction

PDFs

Moments

Quasi-PDFs

Lattice setup

TM fermions
Momentum
smearing

Computation setup

Excited states

Cost

Momenta

Statistics

Procedure

Results

Summary

Krzysztof Cichy PDFs from lattice QCD at the physical point – Maryland – 07.04.2018 – 12 / 45

For each gauge field configuration, we use:

• 6 directions of Wilson line: ±x,±y,±z

• 16 source positions:

⋆ 1 high precision (HP) inversion

⋆ 16 low precision (LP) inversions

• Bias from the LP inversions corrected using the Covariant
Approximation Averaging technique (CAA)
E. Shintani et al., Phys. Rev. D91, 114511 (2015)

Crucial thing: choice of nucleon momenta

Needs careful choice of source-sink separation
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Huge excited states effects at large momenta!

See also slides by Jeremy
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Excited states effects seem to be under control!

See also slides by Jeremy



Source-sink separation

Krzysztof Cichy PDFs from lattice QCD at the physical point – Maryland – 07.04.2018 – 15 / 45

✶�✁
✶�✂

✶�✄
✶�☎

✶�✆

③✝✞✟✠

✵�✄
✵�☎

✵�✆

✉
✡☛

③✝✞✟☞

✼ ✽ ✾ ✶✵ ✶✶ ✶✁ ✶✂

✵�✵✂

✵�✵✆

✵�✵✾

✵�✶✁ ③✝✞✟✌✠

✵�✵✁

✵�✵✂

✵�✄☎

✵�✄✆ ③✝✞✟✠

✵�☎✵

✵�☎✆

✵�✡✵

✵�✡✆

✉
☛☞

③✝✞✟✌

✼ ✽ ✂ ✄✵ ✄✄ ✄☎ ✄✡

✵�✄☎

✵�✄✆

✵�✄✽

③✝✞✟✠✍

Nucleon momentum 6π
48 ≈ 0.83 GeV

Certain regions of z are very much affected by excited states!
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Reaching 2.2 GeV @ Ts ≈ 0.75 fm pretty cheap – O(1) million CPUh
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Going to 3 GeV @ Ts ≈ 0.75 fm feasible – O(10) million CPUh.

BUT: definitely too large excited states contamination
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• Elimination of excited states must not be compromised – reaching
really large momenta extremely difficult if one takes excited
states seriously.

• Note that the log-linear extrapolation of the cost is likely to
underestimate this cost.

• Momentum smearing technique is extremely useful, but it does
not kill the exponential signal-to-noise problem.

• It moves it to somewhat higher momenta:

⋆ without it, momentum 0.8-0.9 GeV at Ts ≈ 1.1 fm becomes
the borderline (tens of million CPUh),

⋆ with it, the same cost makes 1.4-1.5 GeV reachable.

• Key aspect for the future: how to tackle the signal-to-noise
problem at safe source-sink separations.
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• In our work, we decided to learn from:

⋆ the many-year effort to compute moments on the lattice,
⋆ tests of 3 source-sink separations: Ts ≈ 0.75, 0.94, 1.13 fm.

• Ts ≈ 1.1 fm seems to be the lowest justifiable choice, i.e. it
should be safe from excited states at the ∼10% level.

• With Ts ≈ 0.75 fm, excited states totally uncontrolled (20%,
30%, 50% ???) – may affect different x-ranges in a different way.

• Simultaneous fit of different Ts? Makes sense only if similar
statistical precision of all Ts =⇒ impossible here without investing
resources beyond the current computing capabilities.

• Hence, given these capabilities, we take:

⋆ aP3 = 6π/48 ⇒ P3 ≈ 0.83 GeV
⋆ aP3 = 8π/48 ⇒ P3 ≈ 1.11 GeV all at Ts ≈ 1.13 fm
⋆ aP3 = 10π/48 ⇒ P3 ≈ 1.38 GeV
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P3 =
6π
L P3 =

8π
L P3 =

10π
L

Ins. Nconf Nmeas Ins. Nconf Nmeas Ins. Nconf Nmeas

γ0 50 4800 γ0 425 38250 γ0 655 58950

γ5γ3 65 6240 γ5γ3 425 38250 γ5γ3 655 58950
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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Bare matrix elements for helicity PDFs
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV. See slides by Martha

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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Bare matrix elements 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉 contain divergences
that need to be removed:

• standard logarithmic divergence with respect to the regulator,
log(aµ),

• power divergence related to the Wilson line; resums into a
multiplicative exponential factor, exp (−δm|z|/a+ c|z|)
δm – strength of the divergence, operator independent,
c – arbitrary scale (to be fixed by the renormalization
prescription).

See slides by Martha
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Proposed renormalization programme described in:
C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen,
H. Panagopoulos, F. Steffens, “A complete non-perturbative renormalization
prescription for quasi-PDFs”, Nucl. Phys. B923 (2017) 394-415 (Frontiers Article)

Important insights also from the lattice perturbative paper:
M. Constantinou, H. Panagopoulos, “Perturbative Renormalization of

quasi-PDFs”, Phys. Rev. D96 (2017) 054506

→ discovered mixing between the vector and scalar matrix elements
(unpolarized PDF). This perturbative analysis is very important
guidance to non-perturbative renormalization!

Non-perturbative renormalization scheme: RI’-MOM.
G. Martinelli et al., Nucl. Phys. B445 (1995) 81

See slides by Martha
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RI’-MOM renormalization conditions (for cases without mixing):
for the operator:

Z−1
q ZO(z)

1

12
Tr

[

V(p, z)
(

VBorn(p, z)
)−1

]∣

∣

∣

p2=µ̄2
0

= 1 ,

for the quark field:

Zq =
1

12
Tr

[

(S(p))−1 SBorn(p)
]

∣

∣

∣

p2=µ̄2
0

.

• momentum p in the vertex function is set to the RI′ renormalization scale µ̄0

• V(p, z) – amputated vertex function of the operator,

• VBorn – its tree-level value, VBorn(p, z)=iγ3γ5 e
ipz for helicity,

• S(p) – fermion propagator (SBorn(p) at tree-level).

This prescription handles all divergences that are present and applies the
necessary finite renormalization related to the lattice regularization.

See slides by Martha
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• The power divergence related to the Wilson line makes the values
of Z-factors very large at large lengths.

• Hence, we mildly smoothen the divergence by applying stout
smearing only to the Wilson line.

• Note: we do not apply it to the Dirac operator – potentially
dangerous procedure.

• We test:

⋆ 5 stout smearing steps
⋆ 10 stout smearing steps
⋆ 15 stout smearing steps

• This influences both bare matrix elements and the values of
Z-factors.

• But: renormalized matrix elements should be independent of the
number of stout steps!

See also slides by Martha
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Important self-consistency check for the renormalization procedure!

See also slides by Martha
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

See slides by Fernanda
7. Apply target mass corrections to eliminate residual mN/P3

effects.
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Nucleon momentum 10π
48
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Nucleon momentum 10π
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The matching formula can be expressed as:

q(x, µ) =

∫ ∞

−∞

dξ

|ξ|
C

(

ξ,
µ

xP3

)

q̃

(

x

ξ
, µ, P3

)

C – matching kernel:

C

(

ξ,
ξµ

xP3

)

= δ(1− ξ) +
αs

2π
CF







































[

1 + ξ2

1− ξ
ln

ξ

ξ − 1
+ 1 +

3

2ξ

]

+

ξ > 1,

[

1 + ξ2

1− ξ
ln

x2P 2
3

ξ2µ2
(4ξ(1− ξ))− ξ(1 + ξ)

1− ξ
+ 2ι(1− ξ)

]

+

0 < ξ < 1,

[

−1 + ξ2

1− ξ
ln

ξ

ξ − 1
− 1 +

3

2(1− ξ)

]

+

ξ < 0,

[T. Izubuchi et al., arXiv:1801.03917 [hep-ph], C. Alexandrou et al., arXiv:1803.02685 [hep-lat]]

ι=0 for γ0 and ι=1 for γ3/γ5γ3.

Plus prescription at ξ=1:
∫

dξ

|ξ|

[

C

(

ξ,
ξµ

xP3

)]

+

q̃

(

x

ξ

)

=

∫

dξ

|ξ|
C

(

ξ,
ξµ

xP3

)

q̃

(

x

ξ

)

−q̃ (x)

∫

dξ C

(

ξ,
µ

xP3

)

.

See slides by Fernanda
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Nucleon momentum 10π
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The procedure to obtain light-cone PDFs from the lattice
computation can be summarized as follows:

1. Compute bare matrix elements: 〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉

2. Compute vertex functions and the resulting renormalization
functions in the intermediate RI’-MOM scheme ZRI′(z, µ).

3. Convert the renormalization functions to the MS scheme and
evolve to µ̄ = 2 GeV.

4. Apply the renormalization functions to the bare matrix elements,
obtaining renormalized matrix elements in the MS scheme.

5. Calculate the Fourier transform, obtaining quasi-PDFs:

q̃(x, µ2, P3) =

∫

dz

4π
eixP3z〈N |ψ(z)ΓA(z, 0)ψ(0)|N〉.

6. Relate quasi-PDFs to light-cone PDFs via a matching procedure.

7. Apply target mass corrections to eliminate residual mN/P3

effects.
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In the infinite momentum frame, nucleon mass does not matter, i.e.
mN/P3 = 0.

Here, we work with nucleon boosted to finite momentum P3 and we
need to correct for mN/P3 6= 0.

We use formulae derived in:
[J.W. Chen et al., Nucl.Phys. B911 (2016) 246-273, arXiv:1603.06664 [hep-ph]]

Important feature: particle number is conserved in nucleon mass
corrections.



Matched PDF + TMCs

Krzysztof Cichy PDFs from lattice QCD at the physical point – Maryland – 07.04.2018 – 41 / 45

Nucleon momentum 10π
48



Momentum dependence of final PDF
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Nucleon momenta {6,8,10}π
48

Unpolarized PDF Polarized PDF
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Physical vs. non-physical pion mass – 135 vs. 375 MeV
unpolarized PDF
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Different systematic effects still need to be addressed:

• pion mass ✓

• cut-off effects ✓✗

• finite volume effects ✓✗

• contamination by excited states ✓✗

• higher-twist effects ✓✗

• truncation of conversion, evolution and matching ✗

• lattice artifacts in renormalization functions ✓✗

• . . .

Biggest challenge:
Reach large momenta at large source-sink separations
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• We have shown a computation of the full Bjorken-x
dependence of PDFs from first principles at a physical pion
mass.

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.

• We need to be slow and careful, go one step at a time.

• There will always be room for improvement of precision and given
the importance of the subject, a better precision will always be
desired.

• In the future: also other kinds of structure functions: GPDs,
TMDs, gluon PDFs etc.
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• We have shown a computation of the full Bjorken-x
dependence of PDFs from first principles at a physical pion
mass.

• Very encouraging results and already agreement with pheno for a
range of x values.

• But: still a long way to go to control all systematics.

• We need to be slow and careful, go one step at a time.

• There will always be room for improvement of precision and given
the importance of the subject, a better precision will always be
desired.

• In the future: also other kinds of structure functions: GPDs,
TMDs, gluon PDFs etc.

Thank you for your attention!
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Standard Fourier transform defining qPDFs: q̃(x) = 2P3

∫

zmax

−zmax

dz

4π
eixzP3h(z)

can be rewritten using integration by parts as: [H.W. Lin et al., arXiv:1708.05301]

q̃(x) = h(z)
eixzP3

2πix

∣

∣

∣

zmax

−zmax

−

∫

zmax

−zmax

dz

2π

eixzP3

ix
h
′(z).

Truncation: h(|z| ≥ zmax) = 0 is equivalent to neglecting the surface term.

aP3 =
10π
48

Oscillations ✓ Small-x ✗
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