Auxiliary field approach for nonperturbative renormalization

Jeremy Green

NIC, DESY, Zeuthen

Lattice PDF Workshop April 6-8, 2018

- 1. Quasi-PDF operator
- 2. Auxiliary field approach
- 3. Non-perturbative renormalization
- 4. Renormalized quasi-PDF data

Partly based on JG, F. Steffens, and K. Jansen, 1707.07152

We compute nucleon matrix elements of the operator

$$O_{\Gamma}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{n}) \equiv \bar{\psi}(\boldsymbol{x}+\boldsymbol{\xi}\boldsymbol{n})\Gamma W(\boldsymbol{x}+\boldsymbol{\xi}\boldsymbol{n},\boldsymbol{x})\psi(\boldsymbol{x}),$$

where $n^2 = 1$ is a unit vector, ξ is the separation, and W is a straight Wilson line.

On the lattice we can restrict n to point along an axis, and simply form W from a product of gauge links:

e.g. for
$$\xi > 0$$
, $W(\xi \hat{z}, \mathbf{0}) = U_z^{\dagger} ((\xi - a) \hat{z}) U_z^{\dagger} ((\xi - 2a) \hat{z}) \cdots U_z^{\dagger} (a \hat{z}) U_z^{\dagger} (\mathbf{0})$.

This is a nonlocal operator. How can we understand its renormalization?

Simplest approach: ignore that O_{Γ} is nonlocal. Impose renormalization conditions independently for each ξ to obtain $Z(\xi)$.

1. Perturbative study: one loop in lattice and continuum.

M. Constantinou and H. Panagopoulos, Phys. Rev. D 96, 054506 (2017)

- Renormalization in lattice perturbation theory. Chiral symmetry breaking allows mixing between O_Γ and O_{{[#],Γ}.
- Definition of RI-MOM type scheme and perturbative matching to \overline{MS} .
- 2. Nonperturbative studies: used RI-MOM type schemes.

C. Alexandrou et al. (ETMC), Nucl. Phys. B 923, 394 (2017)

J.-W. Chen et al. (LP³), Phys. Rev. D 97, 014505 (2018)

Issues with this approach:

- Imposing condition at each ξ means an infinite number of conditions.
- Perturbation theory may be unreliable for matching at large ξ .

(Loosely following H. Dorn, Fortsch. Phys. 34, 11 (1986)) The Wilson line satisfies the equation of motion

$$\left[\frac{d}{d\xi} + ig\mathbf{n} \cdot A(\mathbf{x} + \xi \mathbf{n})\right] W(\mathbf{x} + \xi \mathbf{n}, \mathbf{x}) = \delta(\xi).$$

Introduce a scalar, color triplet field $\zeta_n(\xi)$ that is defined on the line $x + \xi n$. (We omit the subscript n most of the time.) Give it the action

$$S_{\zeta} = \int d\xi \, \bar{\zeta} \left[\frac{d}{d\xi} + ig \boldsymbol{n} \cdot \boldsymbol{A} + \boldsymbol{m} \right] \zeta.$$

Then its propagator for fixed gauge background is

$$\left\langle \zeta(\xi)\bar{\zeta}(0)\right\rangle_{\zeta} = \theta(\xi)W(\mathbf{x}+\xi\mathbf{n},\mathbf{x})e^{-m\xi}.$$

We want zero mass but there is no symmetry that forbids it. Unless we use dimensional regularization, a power-divergent counterterm is needed.

Auxiliary field approach: quark operator

Introduce the spinor-valued color singlet ζ -quark bilinear

 $\phi \equiv \bar{\zeta} \psi.$

Then the extended operator for quasi-PDFs is given (for m = 0 and $\xi > 0$) by

$$O_{\Gamma}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{n}) = \left\langle \bar{\phi}(\boldsymbol{x}+\boldsymbol{\xi}\boldsymbol{n})\Gamma\phi(\boldsymbol{x})\right\rangle_{\boldsymbol{\zeta}}.$$

For $\xi < 0$, we can use the relation

$$O_{\Gamma}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{n})=O_{\Gamma}(\boldsymbol{x},-\boldsymbol{\xi},-\boldsymbol{n}).$$

Thus, any QCD correlator involving O_{Γ} can be rewritten as a correlator in QCD+ ζ involving the *local operators* ϕ and $\overline{\phi}$. To renormalize this, we need:

- **1.** Z_{ϕ} to renormalize the local operators.
- 2. The mass counterterm.

Discretize S_{ζ} , restricting *n* to be $\mathbf{n} = \pm \hat{\boldsymbol{\mu}}$:

$$S_{\zeta} = a \sum_{\xi} \frac{1}{1 + am_0} \bar{\zeta}(\mathbf{x} + \xi \mathbf{n}) [\nabla_n + m_0] \zeta(\mathbf{x} + \xi \mathbf{n}),$$

where

$$abla_n = egin{cases} oldsymbol{n} \cdot
abla^* =
abla^*_\mu, & ext{if } oldsymbol{n} = \hat{\mu} \ oldsymbol{n} \cdot
abla = -
abla_\mu, & ext{if } oldsymbol{n} = -\hat{\mu} \end{cases}$$

For $n = +\hat{\mu}$, this yields the bare propagator on fixed gauge field:

$$\left\langle \zeta(\mathbf{x}+\xi\hat{\boldsymbol{\mu}})\bar{\zeta}(\mathbf{x})\right\rangle_{\zeta} = \theta(\xi)e^{-m\xi}U^{\dagger}_{\mu}\left(\mathbf{x}+(\xi-a)\hat{\boldsymbol{\mu}}\right)U^{\dagger}_{\mu}\left(\mathbf{x}+(\xi-2a)\hat{\boldsymbol{\mu}}\right)\cdots U^{\dagger}_{\mu}(\mathbf{x}),$$

where $m = a^{-1} \log(1 + am_0)$. (We could use smeared links *U* in defining the covariant derivative.) In our approach, mixing appears between ϕ and $\mu \phi$ when chiral symmetry is broken. The ζ -quark bilinear $\phi = \overline{\zeta} \psi$ renormalizes as

$$\phi_R = Z_{\phi} (\phi + r_{\min} \mathbf{n} \phi), \qquad \bar{\phi}_R = Z_{\phi} (\bar{\phi} + r_{\min} \bar{\phi} \mathbf{n}).$$

We can use $P_{\pm} \equiv \frac{1}{2}(1 \pm \mathbf{n})$ to define operators that don't mix:

$$\phi^{\pm} \equiv P_{\pm}\phi \implies \phi_R^{\pm} = Z_{\phi}^{\pm}\phi^{\pm}, \text{ where } Z_{\phi}^{\pm} = Z_{\phi}(1 \pm r_{\text{mix}}).$$

The renormalized extended quark bilinear has the form (for all $\xi \neq 0$)

$$O_{\Gamma}^{R}(\boldsymbol{x},\boldsymbol{\xi},\boldsymbol{n}) = Z_{\phi}^{2} e^{-\boldsymbol{m}|\boldsymbol{\xi}|} \bar{\psi}(\boldsymbol{x}+\boldsymbol{\xi}\boldsymbol{n}) \Gamma' W(\boldsymbol{x}+\boldsymbol{\xi}\boldsymbol{n},\boldsymbol{x}) \psi(\boldsymbol{x}),$$

where $\Gamma' = \Gamma + \operatorname{sgn}(\boldsymbol{\xi}) r_{\min}\{\boldsymbol{\eta},\Gamma\} + r_{\min}^{2} \boldsymbol{\eta} \Gamma \boldsymbol{\eta}.$

Three parameters needed: $m, Z_{\phi}, r_{\text{mix}}$.

The Lagrangian for a static quark on the lattice is

$$\mathcal{L}(\mathbf{x}) = \frac{1}{1 + am_0} \bar{Q}(\mathbf{x}) \left[\nabla_t^* + m_0 \right] Q(\mathbf{x}),$$

where *Q* is a color triplet spinor satisfying $\frac{1}{2}(1 + \gamma_t)Q = Q$. Other than the spin degres of freedom (which don't couple in the action) this is the same as for ζ with $n = \hat{t}$. The propagators are also related:

$$\left\langle Q(\boldsymbol{x})\bar{Q}(\boldsymbol{y})\right\rangle_{Q} = \left\langle \zeta(\boldsymbol{x})\bar{\zeta}(\boldsymbol{y})\right\rangle_{\zeta}P_{+}.$$

With broken chiral symmetry, there are two renormalization factors for static-light bilinears:

$$Z_V^{\text{stat}}$$
 for $\bar{\psi}\gamma_t Q$ and Z_A^{stat} for $\bar{\psi}\gamma_t\gamma_5 Q$.

Inserting P_+ , we identify $Z_V^{\text{stat}} = Z_{\phi}^+$ and $Z_A^{\text{stat}} = Z_{\phi}^-$.

1. Lattice artifacts are O(a).

Even with chiral symmetry, the static-light currents need improvement at O(a): e.g.

$$A_0^{\operatorname{stat},I} = \bar{\psi}\gamma_0\gamma_5 Q + ac_A^{\operatorname{stat}}\bar{\psi}\gamma_j\gamma_5 \frac{1}{2} \left(\stackrel{\leftarrow}{\nabla}_j + \stackrel{\leftarrow}{\nabla}_j^*\right) Q.$$

2. No mixing of O_{Γ} with gluon operator, even for flavor singlet.

- ► The local bilinear $\phi = \overline{\zeta} \psi$ is in the flavor fundamental irrep. The corresponding gluon operator is flavor singlet.
- Mixing between quark and gluon PDFs must occur in:
 - a. the matching from quasi-PDF to PDF,
 - **b.** the dependence of quasi-PDFs on p_z .

Transverse momentum-dependent (TMD) PDFs are studied on the lattice using operators with staple-shaped gauge links:

$$\begin{array}{c} b \\ \underbrace{\boldsymbol{\upsilon}}_{\bar{\boldsymbol{\psi}}} \\ \underline{\boldsymbol{\psi}} \end{array} \qquad O^{\mathsf{TMD}} = \bar{\boldsymbol{\psi}}(\boldsymbol{0}) \Gamma W(\boldsymbol{0}, \eta \boldsymbol{\upsilon}) W(\eta \boldsymbol{\upsilon}, \eta \boldsymbol{\upsilon} + \boldsymbol{b}) W(\eta \boldsymbol{\upsilon} + \boldsymbol{b}, \boldsymbol{b}) \psi(\boldsymbol{b}). \end{array}$$

We introduce the auxiliary fields ζ_{v}, ζ_{-v} , and $\zeta_{-\hat{b}}$. Using

- **1.** the ζ -quark bilinear $\phi_n = \overline{\zeta}_n \psi$,
- **2.** the ζ - ζ "corner" bilinear $C_{n',n} = \overline{\zeta}_{n'} \zeta_n$,

we obtain

$$O^{\mathrm{TMD}} = \left\langle \bar{\phi}_{-\boldsymbol{\upsilon}}(\boldsymbol{0}) \Gamma C_{-\boldsymbol{\upsilon},-\hat{\boldsymbol{b}}}(\eta \boldsymbol{\upsilon}) C_{-\hat{\boldsymbol{b}},\boldsymbol{\upsilon}}(\eta \boldsymbol{\upsilon} + \boldsymbol{b}) \phi_{\boldsymbol{\upsilon}}(\boldsymbol{b}) \right\rangle_{\zeta}.$$

The corner operators also must be renormalized with a factor Z_C . In this case mixing will occur between TMD operators with Γ and $[\psi, \Gamma]$.

Nonperturbative approach

In Landau gauge, compute the position-space ζ propagator

$$S_{\zeta}(\xi) \equiv \left\langle \zeta(\boldsymbol{x} + \xi \boldsymbol{n}) \bar{\zeta}(\boldsymbol{x}) \right\rangle_{\text{QCD}+\zeta} = \left\langle W(\boldsymbol{x} + \xi \boldsymbol{n}, \boldsymbol{x}) \right\rangle_{\text{QCD}},$$

the momentum-space quark propagator

$$S_q(\boldsymbol{p}) \equiv \sum_{\boldsymbol{x}} e^{-i\boldsymbol{p}\cdot\boldsymbol{x}} \left\langle \psi(\boldsymbol{x})\bar{\psi}(\boldsymbol{0}) \right\rangle,$$

and the mixed-space Green's function for ϕ^{\pm} :

$$G^{\pm}(\xi, \boldsymbol{p}) \equiv \sum_{\boldsymbol{x}} e^{i\boldsymbol{p}\cdot\boldsymbol{x}} \left\langle \zeta(\xi\boldsymbol{n})\phi^{\pm}(\boldsymbol{0})\bar{\psi}(\boldsymbol{x})\right\rangle_{\text{QCD}+\zeta}.$$

These renormalize as

$$\begin{split} S^R_{\zeta}(\xi) &= e^{-m\xi} Z_{\zeta} S_{\zeta}(\xi), \quad S^R_q(\boldsymbol{p}) = Z_q S_q(\boldsymbol{p}), \\ G^{\pm}_R(\xi, \boldsymbol{p}) &= e^{-m\xi} \sqrt{Z_{\zeta} Z_q} Z^{\pm}_{\phi} G^{\pm}(\xi, \boldsymbol{p}). \end{split}$$

Take the effective energy of the ζ propagator:

$$E_{\rm eff}(\xi) \equiv -\frac{d}{d\xi} \log \operatorname{Tr} S_{\zeta}(\xi).$$

This renormalizes as $E_{\text{eff}}^{R}(\xi) = m + E_{\text{eff}}(\xi)$. We can impose the condition $E_{\text{eff}}(\xi_0) = 0$ for some ξ_0 . Convert to $\overline{\text{MS}}$ at small ξ using perturbation theory: static quark propagator known to three-loop order.

K. Melnikov and T. van Ritbergen, Nucl. Phys. B 591, 515 (2000)

K. G. Chetyrkin and A. G. Grozin, Nucl. Phys. B 666, 289 (2003)

Bare E_{eff} computed on $N_f = 4$ twisted mass ensembles.

Two lattice spacings: 0.064 fm (β = 2.10), 0.082 fm (β = 1.95).

Three different link discretizations used.

Match thin links on fine lattice with perturbation theory at small ξ , then match thin with smeared links at larger ξ .

Renormalized E_{eff} computed on $N_f = 4$ twisted mass ensembles.

Two lattice spacings: 0.064 fm (β = 2.10), 0.082 fm (β = 1.95).

Three different link discretizations used.

Match thin links on fine lattice with perturbation theory at small ξ , then match thin with smeared links at larger ξ .

We use momentum space for quark fields and position space for ζ .

For Z_{ζ} , we use the condition

For ϕ^{\pm} , "amputate" the Green's function:

$$\left[\frac{1}{3}\operatorname{Tr} S_{\zeta}^{R}(\xi_{0})\right]^{2} = \frac{1}{3}\operatorname{Tr} S_{\zeta}^{R}(2\xi_{0}) \qquad \Lambda^{\pm}(\xi, \boldsymbol{p}) \equiv S_{\zeta}^{-1}(\xi)G^{\pm}(\xi, \boldsymbol{p})S_{q}^{-1}(\boldsymbol{p}).$$

Both of these serve to eliminate the dependence on *m*.

Then to determine Z_{ϕ}^{\pm} we impose the condition

$$\frac{1}{6}\mathfrak{R}\operatorname{Tr}\Lambda_R^{\pm}(\boldsymbol{p}_0,\xi_0)=1$$

at some scale $\mu^2 = \mathbf{p}_0^2$. This is a two-parameter family of schemes, which depends on the dimensionless parameters $y \equiv |\mathbf{p}_0|\xi_0$ and $z \equiv (\mathbf{n} \cdot \mathbf{p}_0)/|\mathbf{p}_0|$.

Conversion to MS

Using dimensional regularization, we computed at one-loop order the propagators:

This gave the conversion factor:

$$C_{\phi} \equiv \frac{Z_{\phi}^{MS}(\mu)}{Z_{\phi}^{RI-xMOM}(\mu, y, z=1)} = 1 + \alpha_s(\mu)C_F f(y) + O(\alpha_s^2).$$

Anomalous dimension for ϕ taken from static-light bilinear.

Renormalization of bilinear

Unsmeared links on fine lattice spacing.

4d volume sources used to get good signal inexpensively.

Ratio between different link smearings

Nonperturbative matching at long distance and low momentum.

Mixing parameter?

Likely affected by O(a) lattice artifacts. Avoid mixing for now.

The quark helicity matrix element $\Delta h(\xi, p_z)$ is given by

$$\langle \boldsymbol{p}|O_{\boldsymbol{\mu}\gamma_5}(\boldsymbol{\xi},\boldsymbol{n})|\boldsymbol{p}\rangle = \Delta h(\boldsymbol{\xi},\boldsymbol{n}\cdot\boldsymbol{p})\bar{u}(\boldsymbol{p})\boldsymbol{\mu}\gamma_5 u(\boldsymbol{p}),$$

and the quark helicity quasi-PDF $\Delta \tilde{q}(x, p_z)$ by

$$\Delta \tilde{q}(x,p_z) = p_z \int \frac{d\xi}{2\pi} e^{-i\xi p_z x} \Delta h(\xi,p_z).$$

Unaffected by mixing because { η_1, η_2 } = 0. Term with $r_{mix}^2 (\leq 0.01)$ can be neglected.

Calculations performed on N_f = 2 + 1 + 1 twisted mass ensembles with $m_\pi \approx 370$ MeV, using $p_z \approx 1.85$ GeV.

Helicity matrix element: bare

Fine lattice spacing.

Helicity matrix element: renormalized

Fine lattice spacing.

We want to show that the power divergence $m \sim a^{-1}$ is under control and that the $a \rightarrow 0$ limit can be taken.

First steps to take:

Revisit existing calculations to reduce excited-state effects.

Add a third lattice spacing, a = 0.0934 fm.

Increase statistics exponentially with *t* to reduce exponential growth of noise.

Study on coarsest lattice spacing. Excited states cause real part to dip below zero. For continuum-limit study, take T > 0.9 fm.

Jeremy Green | DESY, Zeuthen | Lattice PDF Workshop | Page 25

Taking the continuum limit of Δh

For fixed ξ and p_z we could take the continuum limit of $\Delta h(\xi, p_z)$. But this is not continuous (even divergent) as $|\xi| \rightarrow 0$. Needs a trickier double extrapolation $|\xi| \rightarrow 0$ and $a \rightarrow 0$.

Instead, try computing $\Delta \tilde{q}$ for each lattice spacing and then take $a \rightarrow 0$.

Taking the continuum limit of Δh

For fixed ξ and p_z we could take the continuum limit of $\Delta h(\xi, p_z)$. But this is not continuous (even divergent) as $|\xi| \rightarrow 0$. Needs a trickier double extrapolation $|\xi| \rightarrow 0$ and $a \rightarrow 0$.

Instead, try computing $\Delta \tilde{q}$ for each lattice spacing and then take $a \rightarrow 0$.

Additional problem: noise becomes very large at large $|\xi|$. Proposed solutions:

- Match to a model for the large- $|\xi|$ behavior.
- Use $h'(\xi)$ rather than $h(\xi)$. LP³, 1708.05301
- Use a Gaussian to suppress large- $|\xi|$ region. LP³, 1711.07858

Here we will simply use a hard cutoff. This leads to some unphysical oscillations in \tilde{q} .

Helicity quasi-PDF: discretization effects

Helicity quasi-PDF: discretization effects

Helicity quasi-PDF: discretization effects

No significant discretization effects seen.

Continuum limit?

O(a) improvement would help a lot.

We are now able to renormalize the nonlocal operator for quasi-PDFs. Work still to be done:

- O(a) improvement and $a \rightarrow 0$ limit.
- Comparison with whole operator approach.
- Control over large- $|\xi|$ region.

It is important to demonstrate control over systematics for quasi-PDFs, even at heavy m_{π} and small p_z .

Once we have quasi-PDF:

- 1. Perturbatively match to PDF. Currently available at one-loop order.
- **2.** Take the $p_z \rightarrow \infty$ limit.

Results appearing at physical m_{π} :

- C. Alexandrou et al. (ETMC), 1803.02685
- J.-W. Chen et al. (LP³), 1803.04393