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Operator for quark quasi-PDFs

We compute nucleon matrix elements of the operator

Or(x,&,n) = Y(x + En)ITW(x + &n, x)Y(x), J

where n? = 1 is a unit vector, £ is the separation, and W is a straight Wilson
line.

On the lattice we can restrict n to point along an axis, and simply form W
from a product of gauge links:

eg. for £ >0, W(¢2,0) = UJ (¢ - 0)2)U] (¢ - 20)2) - -- U] (a2) U] (0).

This is a nonlocal operator. How can we understand its renormalization?
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Whole operator approach

Simplest approach: ignore that Or is nonlocal. Impose renormalization
conditions independently for each & to obtain Z(¢).

1. Perturbative study: one loop in lattice and continuum.
M. Constantinou and H. Panagopoulos, Phys. Rev. D 96, 054506 (2017)

» Renormalization in lattice perturbation theory. Chiral symmetry
breaking allows mixing between Or and Oy ).
» Definition of RI-MOM type scheme and perturbative matching to MS.

2. Nonperturbative studies: used RI-MOM type schemes.
C. Alexandrou et al. (ETMC), Nucl. Phys. B 923, 394 (2017)
J.-W. Chen et al. (LP?), Phys. Rev. D 97, 014505 (2018)

Issues with this approach:
» Imposing condition at each ¢ means an infinite number of conditions.

» Perturbation theory may be unreliable for matching at large &.
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Auxiliary field approach

(Loosely following H. Dorn, Fortsch. Phys. 34, 11 (1986))
The Wilson line satisfies the equation of motion

dig +ign - A(x + &én)

Introduce a scalar, color triplet field (,,(¢) that is defined on the line x + &n.
(We omit the subscript n most of the time.) Give it the action

d

— +ign-A+m

sngdgg i

Then its propagator for fixed gauge background is

{(®O), = 0OWx + En,x)e.

W(x + én,x) = §(&).

Z.

We want zero mass but there is no symmetry that forbids it. Unless we use
dimensional regularization, a power-divergent counterterm is needed.
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Auxiliary field approach: quark operator

Introduce the spinor-valued color singlet {-quark bilinear

o=y

Then the extended operator for quasi-PDFs is given (for m = 0 and ¢ > 0) by

Or(x,£,m) = (§(x + EmTH(x), . J

For £ < 0, we can use the relation
Or(x,¢,n) = Or(x,—&,—n).

Thus, any QCD correlator involving Or can be rewritten as a correlator in
QCD+{ involving the local operators ¢ and ¢. To renormalize this, we need:

1. Zy to renormalize the local operators.

2. The mass counterterm.
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Auxiliary field on the lattice

Discretize Sy, restricting n to be n = % i:

Se=a Y ———L(x + Em[V, + molC (x + Em),

1+ amy

where
v, = n-v-=vy, ffn:ﬁﬁ
n-V=-V, iftn=-j

For n = +[, this yields the bare propagator on fixed gauge field:
((a+Eml), = 0™ Ul (x + ¢ - Qa)U] (x + (£ - 20)4) - Uf (x).

where m = a1 log(1 + amy).
(We could use smeared links U in defining the covariant derivative.)
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Auxiliary field on the lattice: renormalization and mixing

In our approach, mixing appears between ¢ and #¢ when chiral symmetry
is broken. The {-quark bilinear ¢ = (i renormalizes as

¢R = Z¢ (¢ + rmix'/igﬁ)’ qu = Z¢ (?5 + rmixé'/i) .
We can use P, = %(1 + 1) to define operators that don’t mix:

+ = P:t¢ — ¢]ii — Zggi)i’ where Z; = Z¢(1 + rmix)-

The renormalized extended quark bilinear has the form (for all £ # 0)

O (x,&,m) = 7,27 "1 (x + En)I'W (x + En, x) i (x),
where I’' =T + sgn(&) 7., {s, T} + P AT ah.

|

Three parameters needed: m, Zg, rmix.
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Relation to static quark theory

The Lagrangian for a static quark on the lattice is

L(x) =

Q(x) [V; + mo] Q(x).

1+am0

where Q is a color triplet spinor satisfying 1(1 +y;)Q = Q.
Other than the spin degres of freedom (which don’t couple in the action)
this is the same as for { with n = £. The propagators are also related:

(00W)), = ({)®)), P-

With broken chiral symmetry, there are two renormalization factors for
static-light bilinears:

Zy* for yy,Q and  Z3* for ¢y, ysQ.

Inserting P, we identify Z3*" = Z;; and Z3* = Zy.
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Further implications

1. Lattice artifacts are O(a).
Even with chiral symmetry, the static-light currents need improvement
at O(a): e.g.

AstatI — ‘//YOY5Q+aCStatl//YJY5 (V +V. )Q

2. No mixing of Or with gluon operator, even for flavor singlet.

> The local bilinear ¢ = (i is in the flavor fundamental irrep.
The corresponding gluon operator is flavor singlet.
» Mixing between quark and gluon PDFs must occur in:

a. the matching from quasi-PDF to PDF,
b. the dependence of quasi-PDFs on p.
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Generalization: staple-shaped gauge link

Transverse momentum-dependent (TMD) PDFs are studied on the lattice
using operators with staple-shaped gauge links:

o O™D _ &(O)FW(O, no)W(nv, no+b)W (no+b, b)Y (b).

We introduce the auxiliary fields {», {~», and {_;. Using
1. the {-quark bilinear ¢, = {1/,
2. the {-{ “corner” bilinear Cpy, = (s

we obtain
O™ = (§_, (OFC_,, _;(0)C_j , (70 + b} (b)), .

The corner operators also must be renormalized with a factor Z¢.
In this case mixing will occur between TMD operators with T and [#,T].
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Nonperturbative approach

In Landau gauge, compute the position-space { propagator

Se(®) = ({(x+ EmI(0)) .y = (W +Em,X)) oo »

QCD+{

the momentum-space quark propagator

Sq(p) = D P (Y(x)9(0)),

X

and the mixed-space Green’s function for ¢*:

GH(E.p) = Qe ({Emd* 09 () gep,

X

These renormalize as
SF(E) = e ZpSp(E), Sg(P) = ZgSq(p).

GR(€.p) = € ™\ Z; Z,Z5G* (¢, p).-
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Power divergence

Take the effective energy of the { propagator:

d
Ee(§) = T3 log Tr S¢ (£).
This renormalizes as ER (&) = m + Eee(&). We can impose the condition
Ewi(&) = 0 for some &

Convert to MS at small £ using perturbation theory: static quark propagator
known to three-loop order.

K. Melnikov and T. van Ritbergen, Nucl. Phys. B 591, 515 (2000)
K. G. Chetyrkin and A. G. Grozin, Nucl. Phys. B 666, 289 (2003)

Jeremy Green | DESY, Zeuthen | Lattice PDF Workshop | Page 13



Effective energy

L6 it If T unsmeared ]|
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Three different link discretizations used.

Match thin links on fine lattice with perturbation theory at small &,
then match thin with smeared links at larger &.
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Effective energy
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Three different link discretizations used.

Renormalized E ¢
computed on Ny = 4
twisted mass
ensembles.

Two lattice spacings:
0.064 fm (f = 2.10),
0.082 fm (B = 1.95).

Match thin links on fine lattice with perturbation theory at small &,
then match thin with smeared links at larger &.
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RI-xMOM scheme

We use momentum space for quark fields and position space for (.

For ¢*, “amputate” the Green’s

For Z;, we use the condition _
function:

LresP(&)] = L TSR R NG 1S
Trsf@] =3Tsfe) pee ) = 57060 RS )
Both of these serve to eliminate the dependence on m.

Then to determine Z;—; we impose the condition

1 .
CRTrAR(p. &) = 1

at some scale p? = p?. This is a two-parameter family of schemes, which
depends on the dimensionless parameters y = [p|& and z = (n - p,)/|p,|.

Jeremy Green | DESY, Zeuthen | Lattice PDF Workshop | Page 15



Conversion to M_S

Using dimensional regularization, we computed at one-loop order the

propagators:

Sqt @b}% S¢ m

and the vertex function,
restrictingtop cc n
(z=1).

This gave the conversion factor:

ZNS ()
Cy =
ZgI_XMOM (/1’ Y,z = 1)

= 1+ as(1)Crf(y) + O(a;).

Anomalous dimension for ¢ taken from static-light bilinear.
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Renormalization of bilinear
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Unsmeared links on fine lattice spacing.

4d volume sources used to get good signal inexpensively.
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Ratio between different link smearings
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Nonperturbative matching at long distance and low momentum.
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Mixing parameter?
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Likely affected by O(a) lattice artifacts. Avoid mixing for now.
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Helicity quasi-PDF

The quark helicity matrix element Ah(&, p,) is given by

(Ployiys (g’ ")|P> = Ah(f’ n P)ﬂ(P)'/i}’Su(P),

and the quark helicity quasi-PDF Ag(x, p,) by

- d —i&p.x
Mg =pe [ ST AR ).

Unaffected by mixing because {n, shys} = 0.
Term with 2. (< 0.01) can be neglected.

mix

Calculations performed on Ny = 2 + 1 + 1 twisted mass ensembles with
my ~ 370 MeV, using p, =~ 1.85 GeV.
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Helicity matrix element: bare
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Fine lattice spacing.
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Helicity matrix element: renormalized
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Fine lattice spacing.
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Toward the continuum limit

We want to show that the power divergence m ~ a™! is under control and
that the a — 0 limit can be taken.

First steps to take:

» Revisit existing calculations to reduce excited-state effects.
» Add a third lattice spacing, a = 0.0934 fm.

10000 I I I ; 1
_,_”j 8000 |-
=5
§ 000 | Increase statistics exponentially
- . with ¢ to reduce exponential growth
] 4000 4 .
2 . of noise.
2000 B
L] L] L] L]
() 1 I
4 5 6 7 8 9 10
T/a
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Excited-states study
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Study on coarsest lattice spacing.
Excited states cause real part to dip below zero.
For continuum-limit study, take T > 0.9 fm.
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Helicity matrix element: discretization effects
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Taking the continuum limit of Ah

For fixed & and p, we could take the continuum limit of Ah(&, p,).

But this is not continuous (even divergent) as |£| — 0.
Needs a trickier double extrapolation |£] — 0 and a — 0.

Instead, try computing Ag for each lattice spacing and then take a — 0.
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Taking the continuum limit of Ah

For fixed £ and p, we could take the continuum limit of Ah(&, p;).

But this is not continuous (even divergent) as |£| — 0.
Needs a trickier double extrapolation |£] — 0 and a — 0.

Instead, try computing Ag for each lattice spacing and then take a — 0.

Additional problem: noise becomes very large at large |£].
Proposed solutions:

» Match to a model for the large-|£| behavior.
» Use h’(&) rather than h(&). LP?, 1708.05301
» Use a Gaussian to suppress large-|£| region. Lp?, 1711.07858

Here we will simply use a hard cutoff. This leads to some unphysical
oscillations in g.
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Helicity quasi-PDF: discretization effects

9 a (fm)
i B 0.0934 |

Aii — Ad (MS, 2 GeV)
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Helicity quasi-PDF: discretization effects

10 ; . . .
a (fm)

8r == 0.0934 |

6l == 0.082

Aii — Ad (MS, 2 GeV)
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Helicity quasi-PDF: discretization effects

Aii — Ad (MS, 2 GeV)

No significant discretization effects seen.

Jeremy Green | DESY, Zeuthen | Lattice PDF Workshop | Page 27



Continuum limit?

Aii — Ad (MS, 2 GeV) at x = 0.3

|
(S}
I
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O(a) improvement would help a lot.
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We are now able to renormalize the nonlocal operator for quasi-PDFs.
Work still to be done:

» O(a) improvement and a — 0 limit.
» Comparison with whole operator approach.
» Control over large-|¢| region.

It is important to demonstrate control over systematics for quasi-PDFs,
even at heavy m, and small p,.

Once we have quasi-PDF:
1. Perturbatively match to PDF. Currently available at one-loop order.
2. Take the p, — oo limit.

Results appearing at physical m:
C. Alexandrou et al. (ETMC), 1803.02685
J.-W. Chen et al. (LP?), 1803.04393
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