Recent Searches for New-Physics States at BABAR

Abner Soffer Tel Aviv University On behalf of the BABAR Collaboration

6th International Workshop on High Energy Physics in the LHC Era Valparaiso, Chile, 6-12 January, 2016

Outline

- The BABAR experiment
- Search for new scalars decaying to cc

 PRD 91, 071102(R) (2015)
- Search for new long-lived particles
 PRL 114, 171801 (2015)

BABAR energy and dataset

Resonance	L(fb ⁻¹)	#(10 ⁶)
Υ(4 <i>S</i>)	424	471
Υ(3 <i>S</i>)	28	121
Υ(2 <i>S</i>)	14	99

Belle data ended mid-2010, $L(4S) = 711 \text{ fb}^{-1}, L(5S) = 121 \text{ fb}^{-1}$

3

The BABAR Detector

Search for new scalar A^0 decaying to $c\bar{c}$

Motivations for light scalars

A⁰ branching fractions (NMSSM)

$\Upsilon(nS) \rightarrow A^0 \gamma$ searches

Radiative Decays of Y(nS) Signature: monochromatic photon

 $A^{0} \rightarrow \mu^{+}\mu^{-}$, PRL**103**, 081803 (2009) $A^{0} \rightarrow \tau^{+}\tau^{-}$, PRL**103**, 181801 (2009) $A^{0} \rightarrow$ hadrons, PRL**107**, 221803 (2011) $A^{0} \rightarrow$ invisible, arXiv:0808.0017

BABAR

Additional constraints: $\Upsilon(1S)$ from $\Upsilon(2S,3S) \rightarrow \pi^+\pi^-\Upsilon(1S)$ transitions Signature: two low-momentum pions, recoiling against $\Upsilon(1S)$

 $A^0 \rightarrow \mu^+\mu^-$, PRD 87, 031102 (2013) $A^0 \rightarrow \tau^+\tau^-$, PRD 88, 071102 (2013) $A^0 \rightarrow hadrons$, PRD 82, 0317019R (2013) $A^0 \rightarrow invisible$, PRL 107, 021804 (2011)

CLEO $\Upsilon(1S)$: $A^0 \rightarrow \mu^+ \mu^-$, $\tau^+ \tau^-$, PRL **101**, 151802 (2008) BESIII J/ ψ : $A^0 \rightarrow \mu^+ \mu^-$, PRD **85**, 092012 (2011) (BESIII updated expected soon) Also searches at LHC:

CMS inclusive: $A^0 \rightarrow \mu^+ \mu^-$, PRL **109**, 121801 (2012)

CMS: $h \rightarrow 2(A^0 \rightarrow \mu^+ \mu^-)$, PLB **726**, 564 (2013)

ATLAS: $h \rightarrow (\mu^+\mu^-) (\tau^+\tau^-)$ PRD92 052002 (2015)

Event selection

Calculate light Higgs candidate mass: $m_X^2 = (p_{e^+e^-} - p_{\pi^+\pi^-} - p_{\gamma})^2$

A. Soffer, BABAR new physics, Valparaiso

Backgrounds

- Suppressed using a 24-variable boosted decision tree
- Calculated separately in 10 cases:
 - 5 tag-charm modes
 - $-2 m_X$ regions
- in low-mass region: - $4 < m_X < 8 \text{ GeV}$
- and high-mass region: - $7.5 < m_X < 9.25$ GeV

Background source	Low-mass	High-mass
$\Upsilon(1S) \rightarrow \gamma g g$	35%	1%
$\Upsilon(1S) \rightarrow \text{other}$	34%	66%
$\Upsilon(2S) \rightarrow \text{other}$	15%	18%
$e^+e^- \rightarrow q \bar{q}$	16%	15%

Signal extraction

- Fit candidate-mass spectrum for a smooth background (2nd-order polynomial) + a signal peak (Crystal-Ball function)
- Signal peak moved in steps of 10 (2) MeV in the low (high) mass region.

Results

$$\mathcal{B}(\Upsilon(1S) \to \gamma A^0) \times \mathcal{B}(A^0 \to c\bar{c})$$

Search for new long-lived particle *L*

Motivation 1

E.g., Higgs portal scenario: inflaton mixes with the SM Higgs $\mathcal{L}_{XN} = \frac{1}{2} \partial_{\mu} X \partial^{\mu} X + \frac{1}{2} m_X^2 X^2 - \frac{\beta}{4} X^4 - \lambda \left(H^{\dagger} H - \frac{\alpha}{\lambda} X^2 \right)^2$ $\mathcal{L}_{grav} = -\frac{M_P^2 + \xi X^2}{2} R,$ Bezrukov, Gorbunov,

JHEP 1307 (2013) 140

Parameters are well suited for colliders:

Large 2-track BRs

Measurable lifetimes

10

Motivation 2

- Dark photon production (e.g., 0910.1602, 0903.3941)
 - A' decays promptly into hidden-sector scalars that decay as DV
 - A' is stable but undergoes dark-Higgsstrahlung with subsequent DV

- Our search assumes only that the long-lived particle (*L*):
 - is produced promptly
 - decays in a displaced vertex to 2 tracks

Event selection

- Vertex track pairs:
 - $e^+e^-, \mu^+\mu^-, e^\pm\mu^\mp, \pi^+\pi^-, K^+K^-, \pi^\pm K^\mp$
- Require
 - Track impact parameter $d_0 > 3\sigma$
 - No hits before the vertex
 - -1 < r < 50 cm
 - $\alpha < 0.01$
 - Remove Bhabhas
 & cosmics with angle cuts
 - Crude veto of dense material regions
- Remaining background:
 - Mostly truly displaced tracks (*K_S*, material interactions)

o do

d,

Signal extraction

Fit vertex mass spectrum to smooth background (spline) + signal peak (MC, including per-event resolution) in 2-MeV steps

Exclude from search: *K_S* and low-mass regions incompatible with background fit method (determined using MC)

Dominant systematic uncertainty is due to background modeling – spline bin width.

Results

- Local significance of 4.7 σ at $\mu\mu$ threshold, m = 0.212 GeV, 13 signal events.
- Background fluctuation probability = 4×10^{-4}
- But consistent with missimulated material interactions:
- Of the 34 events with m < 0.215, most are in or near detector material.
- All low momentum tracks poor particle identification.
- 10 events pass e^+e^- criteria
- 10 events pass $\pi^+\pi^-$ criteria

Provide efficiency table as a function of m, $c\tau$, p_T , so results can be applied to any specific model. http://journals.aps.org/prl/abstract/10.1103/PhysRevLet t.114.171801#supplemental

Efficiency dominated by 1 < r < 50 cm cut

Higgs-portal model-dependent upper limits on $B(B \rightarrow X_S L)B(L \rightarrow f)$

- For generic scalar couplings, LHCb (PRL 115, 161802) has much tighter limits from a $B \rightarrow K^* \mu^+ \mu^-$ search.
- BABAR more sensitive for leptophobic or hadrophobic long-lived particle.

A. Soffer, BABAR new physics, Valparaiso

Summary

- BABAR continues to be productive, with unique new-physics searches in ~GeV mass region:
 - Model-independent long-lived particle

• Similar searches can be done at Belle $(1.6 - 2 \times L)$ and then Belle-II (~ $100 \times L$)

