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QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	
without affecting conformal invariance of action!

Unique confinement potential!

Gell Mann, Fritzsch, Leutwyler
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ẑ

L = R⇥ P

Li = (xi
R⇤+b⇤i)⇥ P

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory
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Causal, Frame-independent.  Creation Operators on Simple Vacuum, !
Current Matrix Elements are Overlaps of LFWFS
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Invariant under boosts!  Independent of Pμ 
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Each element of  
flash photograph   

illuminated   
at same LF time

� = t + z/c

Eigenstate -- independent of �
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Evolve in LF time
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Causal, frame-independent



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,
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Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by
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where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD DLCQ: Solve QCD(1+1) for 
any  quark mass and flavors

Minkowski space; frame-independent; no fermion doubling; no ghosts
trivial vacuum

Hornbostel, Pauli, sjb
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Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden Color



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 
Light-Front Wavefunctions

Remarkable new insights from AdS/CFT,the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian
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Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum
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• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing



Light-Front Holography 
and Supersymmetric Features of QCD 

 Stan Brodsky
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• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent: no boosts, no pancakes! 

• Same structure function in e p collider and p rest frame 

• No dependence on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no condensates! 

• Profound implications for Cosmological Constant

Advantages of the Dirac’s Front Form for Hadron Physics

Roberts, Shrock, Tandy, sjb



Need a First Approximation to QCD 
!

 Comparable in simplicity to !
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining 
!

Origin of hadronic mass scale if mq=0



Coulomb  potential  
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Semiclassical first approximation to QED  

Bohr Spectrum
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(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Includes Lamb Shift, quantum corrections

QED atoms: positronium 
and muonium

Schrödinger Eq.



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  
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LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:

�2 = x(1� x)b2
�

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Sums an infinite # diagrams

LQCD

Eliminate higher Fock states              
and retarded interactions

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

mq = 0



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potential
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U is the exact QCD potential  
Conjecture: ‘H’-diagrams generate U?

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)
AdS/QCD:

mq ⇠ 0



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Tèramond, Dosch, sjb
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Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z
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Braun, Gardi

Lepage, sjb
Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

�M (x,Q) =
� Q

d2�k ⇥qq̄(x,�k�)
P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x

1� x

k2
� < Q2

�

i

xi = 1

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for Mesons, 
Baryons	

• Evolution Equations from PQCD, OPE	

• Conformal Expansions	

• Compute from valence light-front wavefunction in light-cone 
gauge



⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

See also Ferreira 	
and Dosch

e'(z) = e+2z2



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

See also Ferreira 	
and Dosch



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique !
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	
without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2



Applications of AdS/CFT  to QCD  
!
!

in collaboration with Guy de Teramond and H. Guenter Dosch

Changes in !
physical!

length scale !
mapped to !

evolution in the !
5th dimension z 

AdS5



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT

AdS5
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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•Soft-wall dilaton profile breaks 
conformal invariance	

•Color Confinement	

•Introduces confinement scale	

•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD



• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

Positive-sign dilaton • de Teramond, sjbe'(z) = e+2z2



AdS Soft-Wall Schrödinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified 
AdS5 

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique !
Confinement Potential!

!
de Tèramond, Dosch, sjb

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	
without affecting conformal invariance of action!

 ' 0.5 GeV

• Fubini, Rabinovici  

e'(z) = e+2z2



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term
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fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes
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Orbital and Radial Pseudoscalar and Vector Meson Excitations
M2(n,L, S) = 42(n + L + S/2)



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3

Superconformal Algebra 

{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q+} = 2H, {S, S+} = 2K

generates the conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  

+[�@
x

+
f

x

], Q

+ =  [@
x

+
f

x

],
S =  

+
x, S

+ =  x

Haag, Lopuszanski, Sohnius (1974)



Consider Rw = Q + wS;

w: dimensions of mass squared

Superconformal Algebra 

Retains Conformal Invariance of Action

G11 =
�
� @

2
x

+ w

2
x

2 + 2wf � w +
4(f + 1

2 )2 � 1
4x

2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R+
w} = 2H + 2w2K + 2wfI � 2wB

G22 =
�
� @

2
x

+ w

2
x

2 + 2wf + w +
4(f � 1

2 )2 � 1
4x

2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2
(n,L) = 42

(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2



�
� @2

⇣ + 4⇣2 + 22(LB + 1) +
4L2

B � 1
4⇣2

�
 +

J = M2 +
J

Baryon Equation

Meson Equation

M2(n,LB) = 42(n + LB + 1)

�
� @2

⇣ + 4⇣2 + 22LB +
4(LB + 1)2 � 1

4⇣2

�
 �J = M2 �J

�
� @2

⇣ + 4⇣2 + 22(J � 1) +
4L2

M � 1
4⇣2

�
�J = M2�J

M2(n,LM ) = 42(n + LM ) Same κ!

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Superconformal 
Algebra 
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42
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Figure 1: Best fit for the value of the hadronic scale
√
λ from the different

trajectories, including radial excitations, for baryons and mesons

1

mu = md = 46 MeV, ms = 357 MeV

preliminary

Fit to the slope of Regge trajectories, 	
including radial excitations



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Chiral Symmetry 
of Eigenstate!
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Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 for same mass 
eigenvalue!

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2!

• Baryon spin carried by quark orbital angular 
momentum:  <Jz> =Lz+1/2!

• Mass-degenerate meson “superpartner” with 
LM=LB+1.! “Shifted  meson-baryon Duality”

Meson and baryon have same κ!

Sz = ±1/2
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Superconformal Algebra 

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

� = 2
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Superconformal Algebra 
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de Tèramond, Dosch, sjb
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic 
QCD (LFHQCD): 	

Identical meson and baryon spectra!

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1
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⇢�� superpartner trajectories

Dosch, de Teramond, sjb
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD (LFHQCD): 	
Identical meson and baryon spectra!

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

M2
meson

M2
nucleon

=
n + L

M

n + L
B

+ 1
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de Tèramond, Dosch, sjb

Solid line:  κ = 0.53 GeV

Superconformal meson-nucleon partners

Identical LFWFs, form factors! Test in e+e� ! H̄H 0



Supersymmetry across the light and heavy-light hadronic spectrum
[H.G. Dosch, GdT, and S. J. Brodsky, Phys. Rev. D 92, 074010 (2015)]

• Introduction of quark masses breaks conformal symmetry without violating supersymmetry
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Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum

Supersymmetric relations for mesons and baryons with c quarks



Dosch, de Teramond, sjb

Supersymmetry across the light and heavy-light spectrum
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Supersymmetric relations for mesons and baryons with b quarks



• Boost Invariant 

• Trivial LF vacuum! No condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

!

• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique !
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	
without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2



Light-Front Holography 
and Supersymmetric Features of QCD 
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Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent	

•QCD scale appears - unique LF potential	

•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter	

•Zero-mass pion for zero mass quarks!	

•Regge slope same for n and L  -- not usual HO	

•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry	

•Phenomenology: LFWFs, Form factors, electroproduction	

•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

Dynamics + Spectroscopy! 



A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3
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Spacelike Pauli Form Factor

F2(Q2)

Q2(GeV2)

JADE determination of �s(MZ)

M =
⇥

TH ⇥�⌅i

M ⇤ f(⇥CM)
QNtot�4

�
initial ⇤

H
i =

�
final ⇤

H
j

Harmonic Oscillator Confinement 
Normalized to anomalous 

moment

F p
2 (Q2)

� = 0.49 GeV

G. de Teramond, sjb 

From overlap of L = 1 and L = 0 LFWFs



e+

e�
��

�+

��

Dressed soft-wall current brings in higher 
Fock states and more vector meson poles
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Timelike Pion Form Factor from AdS/QCD  
          and Light-Front Holography

s(GeV2)

F⇡(s) = (1� �) 1
(1� s
M2

⇢
) + � 1

(1� s
M2

⇢
)(1� s

M2
⇢0

)(1� s
M2

⇢00
)

Prescription for 
Timelike poles :

1
s�M2 + i

p
s�

log |F⇡(s)|
� = 0.17

M2
⇢n

= 42(1/2 + n)

Frascati data 14% four-quark 
 probability
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Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt, and Alfredo Vega	

Nuclear physics in soft-wall AdS/QCD: deuteron 
electromagnetic form factors	

FD(Q2) ⌘ fD(Q2)Fp(
Q2

4
)Fn(

Q2

4
)

2

Then we derive the Schrödinger-type equation of motion (EOM) for the bulk profile Φn(z) with

[

−
d2

dz2
+

4(L+ 4)2 − 1

4z2
+ κ4z2 + κ2U0

]

Φn(z) = M2
d,nΦn(z) . (4)

The analytical solutions of this EOM read

Φn(z) =

√

2n!

(n+ L+ 4)!
κL+5 zL+9/2 e−κ2z2/2 LL+4

n (κ2z2) ,

M2
d,n = 4κ2

[

n+
L+ 5

2
+

U0

4

]

, (5)

where Lm
n (x) are the generalized Laguerre polynomials. Restricting to the ground state (n = 0, L = 0) we get

Md = 2κ
√

5
2 + U0

4 . Using the experimental value of the deuteron mass Md = 1.875613 GeV and κ = 190 MeV

(constrained by data on electromagnetic deuteron form factors), we fix U0 = 87.4494. Note that the scale parameter
κ = 190 MeV is two times smaller than the corresponding parameter for the nucleon [3], which means that the size
of deuteron is two times larger than the one of the nucleon.
In the case of the vector field dual to the electromagnetic field we perform a Fourier transform with respect to the

Minkowski coordinate

Vµ(x, z) =

∫

d4q

(2π)4
e−iqxVµ(q)V (q, z) (6)

where V (q, z) is its bulk profile obeying the following EOM

∂z

(

e−ϕ(z)

z
∂zV (q, z)

)

+ q2
e−ϕ(z)

z
V (q, z) = 0 . (7)

Its analytical solution [1] can be written in the form of an integral representation introduced in Ref. [13]

V (Q, z) = κ2z2
1

∫

0

dx

(1− x)2
e−κ2z2x/(1−x) xa , a =

Q2

4κ2
, Q2 = −q2 . (8)

The gauge-invariant matrix element describing the interaction of the deuteron with the external vector field (dual to
the electromagnetic field) reads

Mµ
inv(p, p

′) = −

(

G1(Q
2)ϵ∗(p′) · ϵ(p)−

G3(Q2)

2M2
d

ϵ∗(p′) · q ϵ(p) · q

)

(p+ p′)µ

− G2(Q
2)

(

ϵµ(p) ϵ∗(p′) · q − ϵ∗µ(p′) ϵ(p) · q

)

(9)

where ϵ(ϵ∗) and p(p′) are polarization and four–momentum of the initial (final) deuteron, with q = p′ − p being the
momentum transfer. The three EM form factors G1,2,3 of the deuteron are related to the charge GC , quadrupole GQ

and magnetic GM form factors by

GC = G1 +
2

3
τdGQ , GM = G2 , GQ = G1 −G2 + (1 + τd)G3, τd =

Q2

4M2
d

. (10)

These form factors are normalized at zero recoil as

GC(0) = 1 , GQ(0) = M2
dQd = 25.83 , GM (0) =

Md

MN
µd = 1.714 , (11)

where Md and MN are deuteron and nucleon masses, Qd = 7.3424 GeV−2 and µd = 0.8574 are the quadrupole
and magnetic moments of the deuteron. Since the deuteron is a spin–1 particle it has three EM form factors in the
one–photon–exchange approximation, due to current conservation and the P and C invariance of the EM interaction.

AdS/QCD,  LF Holography

Chertok, sjb

Ji, Lepage, sjb

Katz, et al

de Tèramond, sjb

3

In our approach the deuteron form factors Gi(Q2), i = 1, 2, 3 are given by the analytical expressions [3]

G1(Q
2) = F (Q2) , Gi(Q

2) = ciF (Q2) , i = 2, 3 (12)

where F (Q2) is the universal form factor predicted by soft-wall AdS/QCD, which is given by the overlap of the square
of bulk profile dual to deuteron wave function and the confined electromagnetic current

F (Q2) =

∞
∫

0

dzΦ2(z)V (Q, z) =
Γ(6)Γ(a+ 1)

Γ(a+ 6)
(13)

where a = Q2/(4κ2). The form factor F (Q2) has the correct power-scaling F (Q2) ∼ 1/(Q2)5 at large Q2 → ∞. Also,
it can be written in the Brodsky-Ji-Lepage form derived within perturbative QCD, which gives the factorization of
the deuteron form factor in terms of the nucleon form factor FN (Q2/4) and the so-called “reduced” nuclear form
factor fd(Q2) [9]: Fd(Q2) = fd(Q2)F 2

N (Q2/4). In particular, our result reads

Fd(Q
2) ≡ F (Q2) =

Γ(6)Γ(a+ 1)

Γ(a+ 6)
=

5!

(a+ 1) . . . (a+ 5)
= fd(Q

2)F 2
N (Q2/4) (14)

where our predictions for fd(Q2) and FN (Q2/4) are

fd(Q
2) =

30(a+ 1)(a+ 2)

(a+ 3)(a+ 4)(a+ 5)
, FN (Q2/4) =

2

(a+ 1)(a+ 2)
(15)

where a = Q2/(4κ2). Our predictions for the charge GC(Q2), quadrupole GQ(Q2) and magnetic GM (Q2) form factors
are in good agreement with data (see Figs.1-3). The data points are taken from Ref. [5, 7]. Also we would like to note

that our result for the deuteron charge radius rC = (−6dGC(Q2)/dQ2|Q2=0)
1/2 =

√

137
40κ2 −Qd = 1.846 fm compares

well with data rC = 2.130± 0.010 fm [4].
In conclusion, we stress again the main result of this paper. As a further application of the soft-wall AdS/QCD

model we calculated the deuteron electromagnetic form factors, which are given by analytical expressions in terms of
a universal form factor F (Q2). In comparison with other theoretical approaches our framework gives a description of
the deuteron form factors in a very simple form and with the use of four free parameters. Two of them, c2 and c3,
are fixed by the normalization of the deuteron form factors, the parameter U0 is fixed using the deuteron mass and
the parameter κ is related to the nucleon size.

This work was supported by the German Bundesministerium für Bildung und Forschung (BMBF) under Grant
No. 05P12VTCTG, by Marie Curie Reintegration Grant IRG 256574, by CONICYT (Chile) Research Project No.
80140097, by CONICYT (Chile) under Grant No. 7912010025, by FONDECYT (Chile) under Grant No. 1140390
and No. 1141280, and by Tomsk State University Competitiveness Improvement Program. V.E.L. would like to thank
Departamento de F́ısica y Centro Cient́ıfico Tecnológico de Valparáıso (CCTVal), Universidad Técnica Federico Santa
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Valparáıso, Chile for warm hospitality.
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Application of Light-Front Holography to the Deuteron Form Factors

Thomas Gutsche, Valery E. Lyubovitskij,  	
Ivan Schmidt, and Alfredo Vega	

!
http://arxiv.org/abs/1501.02738v3

Consistent with quark counting rules	
Ji, Lepage, sjb

http://arxiv.org/abs/1501.02738v3


•Can be used as standard QCD coupling	

•Well measured	

•Asymptotic freedom at large Q2	

•Computable at large Q2 in any pQCD 
scheme	

•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]

Deur,  de Teramond, sjb



5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data
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Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2
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Deur, de Tèramond, sjb
m⇢ =

p
2

mp = 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:

Q2
0 = 1.25± 0.17 GeV2

 = 0.513± 0.007 GeV
Fit to Bj + DHG Sum Rules:
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⇤MS = 0.455± 0.031M⇢

Deur, de Teramond, sjb

Prediction from AdS/QCD:

m⇢ =
p

2

Q2
0 = 1.25± 0.17 GeV2

Q0 Sets factorization scale for ERBL & DGLAP



Tony Zee	
!

"Quantum Field Theory in a Nutshell"	
!

Dreams of Exact Solvability

m⇢

mP
= 1p

2

Light-Front Holography:

⇤MS

m⇢
= 0.455± 0.031

“In other words, if you manage to calculate mP it better come out pro-

portional to ⇤QCD since ⇤QCD is the only quantity with dimension of mass

around.

Similarly for m⇢.

Put in precise terms, if you publish a paper with a formula giving m⇢/mP in

terms of pure numbers such as 2 and ⇡, the field theory community will hail

you as a conquering hero who has solved QCD exactly.”

(mq = 0)
m⇡ = 0

m⇢ ' 2.2 ⇤MSmp ' 3.21 ⇤MS

!
de Tèramond, Dosch, sjb
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•Constituent Counting Rules 
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•Insights into QCD Condensates 

•Chiral Symmetry 

•Systematically improvable



Goals
• Test QCD to maximum precision at the 

LHC 

• Maximize sensitivity to new physics 

• High precision determination of 
fundamental parameters 

• Determine renormalizations scales 
without ambiguity 

• Eliminate scheme dependence

Predictions for physical observables cannot depend on theoretical 
conventions such as the renormalization scheme



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!
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↵(0)

1�⇧(t)

↵(t) =

↵(t
0

)

1�⇧(t,t
0

)

Gell-Mann--Low Effective Charge



• No renormalization scale ambiguity!   !

• Two separate physical scales: t, u = photon virtuality   

• Gauge Invariant.  Dressed photon propagator 

• Sums all vacuum polarization, non-zero beta terms into running 
coupling.   This is the purpose of the running coupling! 

• If one chooses a different initial scale, one must sum an infinite number 
of graphs -- but always recover same result!   

• Number of active leptons correctly set  

• Analytic: reproduces correct behavior at lepton mass thresholds 

• No renormalization scale ambiguity!    

Electron-Electron Scattering in QED

t u
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Independent of the initial renormalization scale

Obeys renormalization group properties;
renormalization scheme- and scale-invariance, transitivity, etc...

The argument of the running coupling is the ‘final scale’ that resums all non-
conformal terms; a function of scheme and renormalization scale

a(τ, {ci})

τ

A

B

C

D

E F

Resummed perturbative QED = dressed 
skeleton expansion; 

the perturbative coefficients are those of the 
would-be conformal theory

Let’s give this lesson a name so we don’t forget:
The Principal of Maximum Conformality

and Stanford Linear Accelerator Center, Stanford Unioersity, Stanford, California 94305*

G. Peter Lepage
Institute for Aduanced Study, Princeton, New Jersey 08540

and Laboratory ofNuclear Studies, Cornell Unioersity, Ithaca, New York I4853*

Paul B.Mackenzie
Fermilab, Batavia, Illinois 6D51D
(Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative
analyses in quantum chromodynamics (QCD) and other gauge theories. For aphelian theories the
method reduces to the standard criterion that only vacuum-polarization insertions contribute to the
effective coupling constant. Given a scheme, our procedure automatically determines the coupling-
constant scale appropriate to a particular process. This leads to a new criterion for the convergence
of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and
find that perturbation theory converges well for all processes other than the gluonic width of the Y.
Our analysis calls into question recent determinations of the QCD coupling constant based upon Y
decay.

I. INTRODUCTION the for orthopositronium is much

On some possible extensions 
of the Brodsky-Lepage-Mackenzie approach 
beyond the next-to-leading order 
G. Grunberg  
Centre de Physique Theorique, Ecole Polytechnique, F-91128 Palaiseau, France 

and 

A.L. Kataev 1 
Randall Laboratory of Physics, University of Michigan. Ann Arbor, M148109-1120, USA 

Received 20 May 1991; revised manuscript received 20 January 1992 

Noting that the choice of  renormalization point advocated by Brodsky, Lepage and Mackenzie ( BLM ) is the flavor independent 
prescription which removes all f-dependence from the next-to-leading order coefficients, we consider the possible generalization 
which requires all higher order coefficients ri to be f-independent constants r,*. We point out that in QCD, setting ri= r,* is always 
possible, but leaves us with an ambiguous prescription. We consider an alternative possibility within the framework of  the BLM 
approach and apply the corresponding prescription to the next-to-next-to-leading approximation of trtot(e+e - ~hadrons)  in QCD. 
The analogous questions and the special features of the BLM and effective charge approaches in QED are also discussed. 

PHYSICAL REVIEW D VOLUME 51, NUMBER 7 1 APRIL 1995

Commensurate scale relations in quantum chromodynamics

Stanley J. Brodsky
Stanford Linear Accelerator Center, Stanford University, Stanford, California 9)909

Hung Jung Lu*
Department of Physics, University of Maryland, College Park, Maryland 20742

(Received 4 May 1994)

We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has

Scale setting using the extended renormalization group and the principle of maximum
conformality: The QCD coupling constant at four loops

Stanley J. Brodsky1,* and Xing-Gang Wu1,2,†

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2Department of Physics, Chongqing University, Chongqing 401331, China

(Received 30 November 2011; published 22 February 2012)

A key problem in making precise perturbative QCD predictions is to set the proper renormalization

scale of the running coupling. The extended renormalization group equations, which express the

invariance of the physical observables under both the renormalization scale- and scheme-parameter

transformations, provide a convenient way for estimating the scale- and scheme-dependence of the

physical process. In this paper, we present a solution for the scale equation of the extended renormal-

ization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/

Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all nonconformal f!ig terms in the perturbative

expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are

independent of the renormalization scheme. The PMC/BLM scales can be fixed order-by-order. As a

useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales

up to next-to-next-to-leading order. An explicit application for determining the scale setting of Reþe"ðQÞ
up to four loops is presented. By using the world average "MSðM Þ ¼ 0:1184& 0:0007, we obtain the

PHYSICAL REVIEW D 85, 034038 (2012)

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

The renormalization scale-setting problem in QCD
Xing-Gang Wua,⇤, Stanley J. Brodskyb, Matin Mojazab,c

a Department of Physics, Chongqing University, Chongqing 401331, PR China
b SLAC National Accelerator Laboratory, Stanford University, CA 94039, USA
c CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230, Denmark

a r t i c l e i n f o

Keywords:
Renormalization group
Renormalization scale
BLM/PMC
QCD

a b s t r a c t

A key problem in making precise perturbative QCD predictions is to set the proper renor-
malization scale of the running coupling. The conventional scale-setting procedure assigns
an arbitrary range and an arbitrary systematic error to fixed-order pQCD predictions. In
fact, this ad hoc procedure gives results which depend on the choice of the renormaliza-
tion scheme, and it is in conflict with the standard scale-setting procedure used in QED.
Predictions for physical results should be independent of the choice of the scheme or other
theoretical conventions. We review current ideas and points of view on how to deal with
the renormalization scale ambiguity and show how to obtain renormalization scheme-
and scale-independent estimates.We begin by introducing the renormalization group (RG)
equation and an extended version, which expresses the invariance of physical observ-
ables under both the renormalization scheme and scale-parameter transformations. The
RG equation provides a convenient way for estimating the scheme- and scale-dependence

Review of past
30 years development

Systematic All-Orders Method to Eliminate Renormalization-Scale and
Scheme Ambiguities in Perturbative QCD

Matin Mojaza*

CP3-Origins, Danish Institute for Advanced Studies, University of Southern Denmark, DK-5230 Odense, Denmark
and SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Stanley J. Brodsky†

SLAC National Accelerator Laboratory, Stanford University, Stanford, California 94039, USA

Xing-Gang Wu‡

Department of Physics, Chongqing University, Chongqing 401331, People’s Republic of China
(Received 13 January 2013; published 10 May 2013)

We introduce a generalization of the conventional renormalization schemes used in dimensional

regularization, which illuminates the renormalization scheme and scale ambiguities of perturbative

QCD predictions, exposes the general pattern of nonconformal f!ig terms, and reveals a special

degeneracy of the terms in the perturbative coefficients. It allows us to systematically determine the

argument of the running coupling order by order in perturbative QCD in a form which can be readily

automatized. The new method satisfies all of the principles of the renormalization group and eliminates an

unnecessary source of systematic error.
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In dim. reg.         poles come in powers of [Bollini & Gambiagi, ‘t Hooft & Veltman, ’72] 1/✏

2

subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:

Z

d4p ! µ2✏

Z

d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
X

i=1

zia
i , (6)

it is easily derived that:
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� 23�1�
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12✏3
+

5�2�0

6✏2
+

3�2
1

8✏2
� �3

4✏

◆

a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

In the modified minimal subtraction scheme (MS-bar) one subtracts together 
with the pole a constant [Bardeen, Buras, Duke, Muta (1978) on DIS results]:  
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�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:
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where aS is the renormalized gauge coupling under a spe-
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and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+
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✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

A finite subtraction from infinity is arbitrary. Let’s make use of this!

This corresponds to a shift in the scale: 

µ2
MS

= µ2
exp(ln 4⇡ � �E)

µ2
� = µ2

MS
exp(��) = µ2

exp(ln 4⇡ � �E � �)

Subtract an arbitrary constant and keep it in your calculation:      -scheme
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subtracted in addition to the standard subtraction
ln 4⇡ � �E of the MS-scheme. The �-subtraction defines
an infinite set of renormalization schemes which we call
�-Renormalization (R�) schemes; since physical results
cannot depend on the choice of scheme, predictions must
be independent of �. The R�-scheme exposes the gen-
eral pattern of nonconformal {�i}-terms, and it reveals a
special degeneracy of the terms in the perturbative coef-
ficients which allows us to resum the perturbative series.
The resummed series matches the conformal series, which
is itself free of any scheme and scale ambiguities as well
as being free of a divergent renormalon series. It is the
final expression one should use for physical predictions.
It also makes it possible to setup an algorithm for au-
tomatically computing the conformal series and setting
the e↵ective scales for the coupling at each perturbative
order.

II. THE �-RENORMALIZATION SCHEME

In dimensional regularization logarithmically divergent
integrals are regularized by computing them in d = 4�2✏
dimensions [25–28]. This requires the following transfor-
mation of the integration measure and introduction of an
arbitrary mass scale µ:
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d4�2✏p . (1)

Divergences are then separated as 1/✏ poles and can be
absorbed into redefinitions of the couplings. The choice
of subtraction procedure is known as the renormalization

scheme and is chosen at the theorist’s convenience. To
avoid dealing with coupling constants changing dimen-
sionality as a function of ✏ one rescales the the couplings
as well with the mass scale µ in the d = 4� 2✏ theory. In
particular, for QCD one rewrites the bare gauge coupling
a0 = ↵0/4⇡ = g2/(4⇡)2 as:

a0 = µ2✏ZaSaS , (2)

where aS is the renormalized gauge coupling under a spe-
cific renormalization scheme S and ZaS is the renormal-
ization constant of the coupling. The mass scale µ is
now understood as the renormalization scale. The bare
coupling must be independent of the arbitrary scale µ,
thus

µ2 da0
dµ2

= 0. (3)

Using this and the expansions

µ2 daS
dµ2

= �✏aS + �(aS) , (4)

�(a) = �a2
1
X

i=0

�ia
i , (5)

Za = 1 +
1
X

i=1

zia
i , (6)

it is easily derived that:

Za =1� �0

✏
a+

✓

�2
0

✏2
� �1

2✏

◆

a2 (7)

�
✓

�3
0

✏3
� 7

6

�0�1

✏2
+

�2

3✏

◆

a3

+

✓

�4
0

✏4
� 23�1�

2
0

12✏3
+

5�2�0

6✏2
+

3�2
1

8✏2
� �3

4✏

◆

a4 + · · ·

and the �i coe�cients are known up to �3, or four loops
[29]. The coe�cients �i are renormalization-scheme de-
pendent; however, it is easy to demonstrate by a general
scheme-transformation that the first two coe�cients �0

and �1 are universal for all mass-independent renormal-
ization schemes.
In the minimal subtraction (MS) scheme [30] one ab-

sorbs the 1/✏ poles appearing in loop integrals which
come in powers of

ln
µ2

⇤2
+

1

✏
+ c , (8)

where c is the finite part of the integral. Since anything
can be hidden into infinity, one can subtract any finite
part as well with the pole. This is equivalent to redefin-
ing the arbitrary scale µ in Eq.(1). The MS-scheme [31]
di↵ers from the MS-scheme by an additional absorption
of the term ln(4⇡)� �E , which corresponds to redefining
µ to:

µ2 = µ2
MS

exp(ln 4⇡ � �E) . (9)

We will generalize this by defining the
�-Renormalization scheme, R�, where one absorbs
ln(4⇡)� �E � �, i.e.

µ2 = µ2
� exp(ln 4⇡ � �E � �) , (10)

where � is an arbitrary finite number, and by appropriate
choice will connect all MS-type schemes. In particular1:

R0 = MS , (11)

Rln 4⇡��E = MS . (12)

The scheme-transformation between di↵erent R� cor-
responds simply to a displacement in their corresponding
scales, i.e.

µ2
�2 = µ2

�1 exp(�2 � �1) . (13)

In particular:

µ2
� = µ2

MS
exp(�) . (14)

1
Note that we have chosen MS as the reference scheme for R0.

This is done since most results today are known in this scheme;

however there is nothing special about MS, and R0 can be rede-

fined to be any other MS-scheme

R�

�-Renormalization Scheme ( R� scheme)

M. Mojaza, Xing-Gang Wu, sjb
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Exposing the Renormalization Scheme Dependence
Observable in the      -scheme:

⇢�(Q
2) =r0 + r1a(µ) + [r2 + �0r1�]a(µ)

2 + [r3 + �1r1� + 2�0r2� + �2
0r1�

2]a(µ)3 + · · ·

R0 = MS , Rln 4⇡��E = MS µ2
= µ2

MS
exp(ln 4⇡ � �E) , µ2

�2 = µ2
�1 exp(�2 � �1)

Note the divergent ‘renormalon series’ n!�n↵n
s

⇢�(Q
2) =r0 + r1a1(µ1) + (r2 + �0r1�1)a2(µ2)

2 + [r3 + �1r1�1 + 2�0r2�2 + �2
0r1�

2
1 ]a3(µ3)

3

The �pka
n
-term indicates the term associated to a diagram with 1/✏n�k

di-

vergence for any p. Grouping the di↵erent �k-terms, one recovers in the Nc ! 0

Abelian limit the dressed skeleton expansion.

R�

Exercise: 
Use the scale displacement relation to derive these expressions

Renormalization Scheme Equation
d⇢

d�
= ��(a)

d⇢

da
!
= 0 �! PMC

M. Mojaza, Xing-Gang Wu, sjb
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Special Degeneracy in PQCD

There is nothing special about a particular value for � , thus for any �

⇢(Q2) =r0,0 + r1,0a(Q) + [r2,0 + �0r2,1]a(Q)2 + [r3,0 + �1r2,1 + 2�0r3,1 + �2
0r3,2]a(Q)3

+ [r4,0 + �2r2,1 + 2�1r3,1 +
5

2
�1�0r3,2 + 3�0r4,1 + 3�2

0r4,2 + �3
0r4,3]a(Q)4

According to the principal of maximum conformality we must set the scales 
such to absorb all ‘renormalon-terms’, i.e. non-conformal terms

⇢(Q2) = r0,0 + r1,0a(Q) + (�0a(Q)2 + �1a(Q)3 + �2a(Q)4 + · · · )r2,1

+ (�2
0a(Q)3 +

5

2
�1�0a(Q)4 + · · · )r3,2 + (�3

0 + · · · )r4,3

+ r2,0a(Q)2 + 2a(Q)(�0a(Q)2 + �1a(Q)3 + · · · )r3,1
+ · · ·

r2,0a(Q2)
2 = r2,0a(Q)2 � 2a(Q)�(a)r3,1 + · · ·

r1,0a(Q1) = r1,0a(Q)� �(a)r2,1 +
1

2
�(a)

@�

@a
r3,2 + · · ·+ (�1)n

n!

dn�1�

(d lnµ2)n�1
rn+1,n



4

MM: I now show how to set the PMC scales - given Eq.(19)
is correct, this is the exact way to do it, di↵erently from the
approximative way we considered and discussed earlier. The
scales naturally depend on the coupling through the beta func-
tion.

Let’s take a look back at Eq. (19). It is easy to see
that we can resum all ri,1 terms, which come with a lin-
ear factor of �j , to all orders by setting the scales (for
simplicity, we treat the higher order �j terms later):

r
1,0a(Q1

) = r
1,0a(Q)� �(a)r

2,1

r
2,0a(Q2

)2 = r
2,0a(Q)2 � 2a(Q)�(a)r

3,1

r
3,0a(Q2

)3 = r
3,0a(Q)3 � 3a(Q)2�(a)r

4,1

...

rk,0a(Qk)
k = rk,0a(Q)2 � k a(Q)k�1�(a)rk+1,1 (21)

From the scale displacement equation (14) for a it is
straightforward to see that:

a(Qk)
k = a(Q)k + ka(Q)k�1�(a) ln

Q2

k

Q2

+ (22)

+


k

2
�
@�

@a
a(Q)k�1 + k(k � 1)a(Q)k�2�(a)2

�
ln2

Q2

k

Q2

+ · · ·

It follows that to absorb all linear �j terms, the scales

Qk must satisfy:

�rk+1,1

rk,0
= ln

Q2

k

Q2

+


1

2

@�

@a
+ (k � 1)

�

a

�
ln2

Q2

k

Q2

+ · · ·
(23)

This leads to the self-consistency equation for Qk:

ln
Q2

k

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 + · · ·
(24)

To leading order (LO) we have:

ln
Q2

k,LO

Q2

= �rk+1

rk,0
. (25)

This resums all linear �j terms, but introduces higher
order �j terms as well beyond the order ak+1. Say, we
are computing an observable to order an. The scales Qk

must resum all �jrk+1,1 terms without introducing higher
order ones up to order an. This means that Qk must be
computed to Nn�(k+1)LO. Let us explicitly perform the
resummation up to a4, that is, up to NNLO. The general
expression for the NLO scale reads:

ln
Q2

k,NLO

Q2

=
�rk+1

/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i ⇣
� rk+1

rk,0

⌘ . (26)

To find the NNLO scale, we first write the self-
consistency equation:

ln
Q2

k

Q2

=
�rk+1,1/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i
ln

Q2
k

Q2 +


1

3!

✓
� @2�

@a2 +
⇣

@�
@a

⌘
2

◆
+ k�1

2

�
a

@�
@a + (k � 1)(k � 2)�

2

a2

�
ln2

Q2
k

Q2 + · · ·
(27)

Then we expand the NLO scale to first order

ln
Q2

k,NLO

Q2

= �rk+1,1

rk,0

✓
1 +


1

2

@�

@a
+ (k � 1)

�

a

�
rk+1,1

rk,0
+ · · ·

◆
, (28)

and replace ln Q2
k

Q2 in the denominator with this NLO expansion, while the ln2 Q2
k

Q2 is replaced with the LO expansion.
We the get:

ln
Q2

k,NNLO

Q2

=
�rk+1,1/rk,0

1 +
h
1

2

@�
@a + (k � 1)�a

i ⇣
� rk+1,1

rk,0

⌘
+


1

3!

✓
� @2�

@a2 � 1

2

⇣
@�
@a

⌘
2

◆
� k�1

2

�
a

@�
@a � (k � 1)�

2

a2

�⇣
rk+1,1

rk,0

⌘
2

. (29)

So far, we kept k general and thus these expressions
for Qk,LO, Qk,NLO and Qk,NNLO hold for a perturbative
expansion to any order. In the particular case, where we
are considering ⇢ to order a4, we have that:

ln
Q2

1

Q2

=
�r

2,1/r1,0

1� 1

2

@�
@a

r2,1
r1,0

+ 1

3!


� @2�

@a2 � 1

2

⇣
@�
@a

⌘
2

�⇣
r2,1
r1,0

⌘
2

.

(30)
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a value for the arbitrary initial scale µ�, or correspond-
ingly fixing the arbitrary scheme, R�. The � dependency
of the coe�cients is not small and since this is an implicit
µ� dependency it is simply wrong to state that the coef-
ficients only depend logarithmically on the scale. This is
intimately connected to the renormalon problem.

X-GW: Here, I have cut o↵ unimportant discussions.

MM: Ok.

Now, it is obvious that in a conformal theory, where
{�i} = {0}, the � dependency vanishes in Eq.(15). That
is, the result is the same in anyR�. Therefore, by absorb-
ing all {�i} dependency into a redefinition of the scales
at each order, we obtain a final result independent of the
initial choice of scale and scheme. Using R� we can make
this statement even more rigorous. From the explicit ex-
pression in Eq. (15) it is easy to confirm that

d⇢�(s)

d�
= �(a)

d⇢�
da

. (17)

We see that to obtain a scheme-invariant and confor-
mal result, we must set the scales such that all {�i}-
functions equal to zero, which further leads to

�(a) = 0 . (18)

Notice that this holds at any order in perturbation the-
ory and is a theoretical requirement, di↵erent from the
physical fact that the all-orders expression for ⇢ must be
renormalization scale and scheme invariant. It should be
emphasized that this is not a fixed point expression for
a but is a fully conformal requirement, that is, the beta
function vanishes identically. This proves the principle

of maximal conformality (PMC) at any order.
X-GW: I think the above demonstration is not complete

or misleading. It is right that if the right side of Eq.(17) is
satisfied by a proper PMC procedure, then the left side can be
satisfied naturally.

MM: This is all I had in mind, in other words Eq.(18) is
the ’proof-of-concept’ of the PMC scale setting - as you say, it
demonstrates that if one sets the scale such that all {�i} are
absorbed, the final result is renormalization scheme invariant
and this is the principal of maximal conformality.

X-GW: However if the left side of Eq.(18) is satisfied we
can only obtain �(a) = 0, but we can not obtain the conclusion
that all the terms involving {�i}-functions are equal to zero,
that is we can not eliminate all {�i}-series. It only happens
when all {�i}-terms are combined into functions of �(a) that
is only a lottery.

MM: There are two ways of obtaining �(a) = 0: either
{�i} = 0 or a(µ) = a⇤, where a⇤ is a constant - the fixed point
value, �(a⇤

) = 0. As I emphasize above, the latter is not what
we are considering. Let me elaborate. The fixed point theory
is a conformal field theory (CFT) - the coupling does not run.
In a CFT it does not make sense to set the scale, since the
theory is scale-invariant (a = a⇤ on all scales). Moreover, the
CFT is not asymptotically free, so we cannot even consider
observables computed in perturbation theory - it has no well-
defined perturbative limit. So, to me it does not make sense
to consider nor discuss this case in the context of the scale

setting problem. Therefore, �(a) = 0 can only mean {�i} = 0

in the context we are considering.
In fact, by setting � = 0 directly, we must demonstrate the

{�i}-terms in the coe�cient functions ri are eliminated simul-
taneously. This point has also been discussed in my previous
letters, but it has not been discussed so far.

MM: I do not understand this last comment?

III. SETTING THE PMC SCALES

The expression in Eq. (15) explicitly shows the pattern
of �i terms appearing in the coe�cients at each order.
That is, if we forget about any reference scheme, the
expression for ⇢ in any scheme will take the form:

⇢(Q2) =r
0,0 + r

1,0a(Q) + [r
2,0 + �

0

r
2,1]a(Q)2

+ [r
3,0 + �

1

r
2,1 + 2�

0

r
3,1 + �2

0

r
3,2]a(Q)3

+ [r
4,0 + �

2

r
2,1 + 2�

1

r
3,1 +

5

2
�
1

�
0

r
3,2 + 3�

0

r
4,1

+ 3�2

0

r
4,2 + �3

0

r
4,3]a(Q)4 +O(a5) (19)

where ri,0 are the conformal part of the coe�cients.
MM: Note that I in this expression have assumed/inferred

some relations between the coe�cients e.g. the �0a(Q)

2 co-
e�cient and the �1a(Q)

3 are equal etc... It follows from Eq.
(15) and I have checked that it is indeed correct for Re+e�!h.
I think this holds for any observable?
We have as before for simplicity of the expression set

µ = Q, but this is not the final expression. We must
set the scale at each order in such a way to absorb all �i

dependencies into the running coupling. The problem is
now to understand which terms should be absorbed into
which scales. We can use R� to provide the solution. In
deriving Eq. (15) we made an equal scale displacement
of each running coupling. To see from where each � ap-
peared, we put a dummy index on the displacement of
each coupling to track its origin. The result is:

⇢�(Q
2) =r

0

+ r
1

a
1

(Q) + (r
2

� �
0

r
1

�
1

)a
2

(Q)2

+ [r
3

� �
1

r
1

�
1

� 2�
0

r
2

�
2

+ �2

0

r
1

�2
1

]a
3

(Q)3

+ [r
4

� �
2

r
1

�
1

� 2�
1

r
2

�
2

� 3�
0

r
3

�
3

+ 3�2

0

r
2

�2
2

� �3

0

r
1

�3
1

+
5

2
�
1

�
0

r
1

�2
1

]a(Q)4 +O(a5) (20)

This immediately shows us which terms should be ab-
sorbed into which running coupling, e.g. we must resum
all �

1

dependency into a
1

etc.. In the end one can remove
the dummy index on the couplings since they were put
only to display the correct resummation pattern.

MM: I must emphasize here that the BLM procedure is
only and approximation to PMC as can be seen above, i.e.
besides the fact that ri,0 depend explicitly on Nf one can also
now observe that e.g. there is an N2

f term coming from �1�0

at order a4 which must be absorbed into a1 - If I have un-
derstood BLM correctly, at this order you absorb only all N3

f

dependency into a1, right?

General result for an observable in any R� renormalization scheme:

PMC scales thus satisfy

M. Mojaza, Xing-Gang Wu, sjb
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Important Example: Top-Quark FB Asymmetry

Table 5: Total cross-sections (in unit: pb) for the top-quark pair production at the Tevatron
with pp̄-collision energy

p
s = 1.96 TeV. For conventional scale setting, we set the scale

µr ⌘ Q. For PMC scale setting, we set the initial scale µinit
r = Q and then apply the

PMC procedure. Here we take Q = mt = 172.9 GeV and use the MSRT 2004-QED parton
distributions [178] as the PDF.

Conventional scale setting PMC scale setting
LO NLO NNLO total LO NLO NNLO total

(qq̄)-channel 4.890 0.963 0.483 6.336 4.748 1.727 -0.058 6.417
(gg)-channel 0.526 0.440 0.166 1.132 0.524 0.525 0.160 1.208
(gq)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332
(gq̄)-channel 0.000 -0.0381 0.0049 -0.0332 0.000 -0.0381 0.0049 -0.0332

sum 5.416 0.985 0.659 7.402 5.272 2.176 0.112 7.559

Figure 16: Dominant cut diagrams for the nf -terms at the ↵4-order of the (qq̄)-channel,
which are responsible for the smaller e↵ective NLO PMC scale µPMC,NLO

r , where the solid
circles stand for the light-quark loops.

• Att̄,HP
FB |O(↵3

s) and App̄,HP
FB |O(↵3

s) stand for the pure QCD asymmetry at the ↵3
s-order under the tt̄-rest

frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(↵2

s↵) and App̄,HP
FB |O(↵2

s↵) stand for the combined QED and weak with the QCD asymmetry
at the ↵2

s↵-order under the tt̄-rest frame and the pp̄ lab frame, respectively.

• Att̄,HP
FB |O(↵2) and App̄,HP

FB |O(↵2) stand for the pure electroweak asymmetry at the ↵2-order under the
tt̄-rest frame and the pp̄ lab frame, respectively.

Total cross-sections for the top-quark pair production at the Tevatron with pp̄-collision energy
p
s =

1.96 TeV and with the same parameters of Ref. [175] are given in Table 5. In the formulas (228,229),

we have defined an e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

for the asymmetric part, which is the weighted

average of the QCD coupling for the (qq̄)-channel; i.e. in using the e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

,

one obtains the same (qq̄)-channel NLO cross-section as that of ↵s(µPMC,NLO
r )8.

It is noted that the NLO-level asymmetric part for (qq̄)-channel only involves the NLO PMC scale for

the non-Coulomb part, so the e↵ective coupling ↵s

⇣

µPMC,NLO
r

⌘

can be unambiguously determined. We

obtain a smaller e↵ective NLO PMC scale µPMC,e↵ective
r ' exp(�9/10)mt ⇠ 70 GeV, which corresponds

to ↵s

⇣

µPMC,NLO
r

⌘

= 0.1228. It is larger than ↵HP
s (mt) ' 0.098 [174, 175]. This e↵ective NLO PMC

scale is dominated by the non-Coulomb nf -terms at the ↵4
s-order, which are shown in Fig.(16). In these

diagrams, the momentum flow in the virtual gluons possess a large range of virtualities. This e↵ect for

8In principle, one could divide the cross-sections into symmetric and asymmetric components and find PMC scales
for each of them. For this purpose, one needs to identify the nf -terms or the n2

f -terms for both the symmetric and
asymmetric parts at the NNLO level separately.
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Figure 17: Comparison of the PMC prediction with the CDF data [166] for the tt̄-pair
forward-backward asymmetry for the whole phase-space. The Hollik and Pagani’s results
(HP) [175] using conventional scale setting are presented for a comparison. The result for
D0 data [167] shows a similar behavior.

NLO PMC scale µPMC,e↵ective
r can be regarded as a weighted average of these di↵erent momentum flows

in the gluons, which can be softer than the nominal scale, mt. Finally, we obtain

Att̄,PMC
FB ' 12.7% ; App̄,PMC

FB ' 8.39% . (230)

Thus after PMC scale setting, the top-quark asymmetry under the conventional scale setting is in-
creased by ⇠ 42% for both the tt̄-rest frame and the pp̄-laboratory frame. This large improvement is
explicitly shown in Fig.(17), where Hollik and Pagani’s results which are derived under conventional
scale setting [175] are presented for comparison.

Another possible e↵ect from QCD can be the lensing e↵ect of the final state interactions of the t and
t̄ with the beam spectators. The same diagrams causes Sivers single-spin asymmetry and di↵ractive
deep inelastic scattering9.

The CDF collaboration has found that when the tt̄-invariant mass, Mtt̄ > 450 GeV, the top-
quark forward-backward asymmetry Att̄

FB(Mtt̄ > 450 GeV) is about 3.4 standard deviations above
the SM asymmetry prediction under the conventional scale setting [173]. After applying PMC scale

setting, we have �tot,PMC
H1H2!tt̄X(Mtt̄ > 450 GeV) = 2.406 pb and ↵s

⇣

µPMC,NLO
r

⌘

= 0.1460 with µPMC,NLO
r ⇠

exp(�19/10)mt ' 26 GeV. Then, we obtain

Att̄,PMC
FB (Mtt̄ > 450 GeV) ' 35.0% , (231)

which is increased by about 1.7 times of the previous one Att̄,HP
FB (Mtt̄ > 450 GeV) = 12.8% [175]. Our

present prediction is only about 1�-deviation from the CDF data, which is shown in Fig.(18). This
shows that, after PMC scale setting, the discrepancies between the SM estimate and the present CDF
and D0 data are greatly reduced.

6 Summary

Because of the RG invariance (39,40), the predictions for a physical observable must be independent
of the renormalization scheme and the initial scale. The results cannot depend on which scheme the

9We thanks Benjamin von Harling and Yue Zhao for conversions on this possibility.
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Figure 18: The PMC prediction of Att̄
FB(Mtt̄ > 450 GeV) and the corresponding CDF

data [166] for the tt̄-pair forward-backward asymmetry forMtt̄ > 450 GeV. The Hollik and
Pagani’s results (HP) [175] using conventional scale setting are presented for a comparison.

theorist chooses; e.g. MS-scheme, MOM-scheme, etc. Note that the conventional MS-scheme is
somewhat artificial. One can introduce a more general MS-like renormalization scheme, R�-scheme,
by further absorbing an arbitrary constant � into 1/✏ pole, i.e. 1

✏ + ln(4⇡) � �E � �. Physical results
cannot depend on the choice of �.

At a fixed-order the dependence on the renormalization scheme and initial scale choice leads to large
uncertainties for perturbative QCD predictions. The problem is compounded in multi-scale processes.
The conventional scale setting procedure assigns an arbitrary range and an arbitrary systematic error
to fixed-order pQCD predictions. As we have discussed in this review, this ad hoc assignment of the
range and associated systematic error is unnecessary and can be eliminated by a proper scale setting
as the PMC.

The extended RG equations, which includes the dependence on the scheme parameters, provide a
convenient way for estimating both the scheme and scale dependence of the perturbative predictions
for a physical process. It provides a way for the running coupling to run reliably either in scale or in
scheme. With the help of the extended RG equations, we have presented a general demonstration for
the RG invariance. Furthermore, this formalism provides a platform for a reliable error analysis, and it
also provides a precise definition for the QCD asymptotic scale under any renormalization R-scheme,
⇤

0tH�R
QCD , which is defined as the pole of the strong coupling in the ’t Hooft scheme associated with

R-scheme.

Several scale setting methods have been proposed in the literature: FAC, PMS, BLM and PMC.
The FAC (Fastest Apparent Convergence) use the scale to contract the prediction to one term. The
PMS (Principle of Minimum Sensitivity) chooses the scale at the point of minimum variation. The
BLM (Brodsky-Lepage-Mackenzie) and PMC (Principle of Maximum Conformality) procedures shift
all {�i}-terms into the argument of the running coupling. Based on the extended RG equation, we
have discussed the self-consistency conditions for a scale setting method, which include the existence
and uniqueness of the renormalization scale, reflexivity, symmetry, and transitivity. These properties
are natural requirements of RG invariance. We have shown that the FAC and BLM/PMC satisfy
these requirements, whereas the PMS does not. The PMS is designed to be renormalization-scheme
independent; however it violates the symmetry and transitivity properties of the renormalization group,
and does not reproduce the Gell Mann-Low scale for QED observables. In addition, the application
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Conventional Scale Setting: ↵(µ) = ↵MS(µ) and µ = [

1
2Q, 2Q]

Brodsky, Wu, Phys.Rev.Lett. 109, [arXiv:1203.5312]

3

PMC scale setting Conventional scale setting

Q = mt/4 Q = mt Q = 10mt Q = 20mt Q =
√
s µR ≡ mt/2 µR ≡ mt µR ≡ 2mt

Tevatron (1.96 TeV) 7.620(5) 7.626(3) 7.625(5) 7.624(6) 7.628(5) 7.742(5) 7.489(3) 7.199(5)

LHC (7 TeV) 171.6(1) 171.8(1) 171.7(1) 171.7(1) 171.7(1) 168.8(1) 164.6(1) 157.5(1)

LHC (14 TeV) 941.8(8) 941.3(5) 942.0(8) 941.4(8) 942.2(8) 923.8(7) 907.4(4) 870.9(6)

TABLE I. Dependence of the tt̄ production cross-sections (in unit: pb) at the Tevatron and LHC on the initial renormalization
scale µinit

R = Q. Here mt = 172.9 GeV. The number in parenthesis shows the Monte Carlo uncertainty in the last digit.

σ
σ

FIG. 1. Total cross-section σtt̄ for the top quark pair produc-
tion versus top quark mass.

equal to each other within part per mill accuracy 1. For
comparison, we also present the results with conventional
scale setting in Table I. For µR ∈ [mt/2, 2mt], we ob-

tain the usual renormalization scale-uncertainty
(

+3%
−4%

)

.

This shows that the renormalization scale uncertainty is
greatly suppressed and essentially eliminated using PMC
even at the NNLO level. This is consistent with renor-
malization group invariance: there should be no depen-
dence of the prediction for a physical observable on the
choice of the initial renormalization scale.

The PMC predictions for total cross-section σtt̄ are
sensitive to the top quark mass. We present σtt̄ as a
function of mt in Fig.(1). After PMC scale setting, the
value of σtt̄ becomes very close to the central values of the
experimental data [9–12]. By varying mt = 172.9 ± 1.1
GeV [19], we predict

σTevatron,1.96TeV = 7.626+0.265
−0.257 pb (6)

σLHC,7TeV = 171.8+5.8
−5.6 pb (7)

σLHC,14TeV = 941.3+28.4
−26.5 pb (8)
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FIG. 2. Comparison of the PMC prediction with the CDF data [21] for the tt̄-pair forward-backward asymmetry for the whole
phase-space. The left diagram is for Att̄

FB in the tt̄-rest frame, the middle diagram is for App̄
FB in the laboratory frame, and

the right diagram is for Att̄
FB(Mtt̄ > 450 GeV). The Hollik and Pagani’s results (HP) [24] using conventional scale setting are

presented for a comparison. The result for D0 data [22] shows a similar behavior.

1 There is some small residual initial-scale dependence in the PMC scales because of unknown-higher-order {βi}-terms.
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Application of the Principle of Maximum Conformality to the Top Quark
Forward-Backward Asymmetry at the Tevatron

Stanley J. Brodsky1∗ and Xing-Gang Wu1,2†
1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA

2 Department of Physics, Chongqing University, Chongqing 401331, P.R. China
(Dated: June 19, 2012)

The renormalization scale uncertainty can be eliminated by the Principle of Maximum Con-
formality (PMC) in a systematic scheme-independent way. Applying the PMC for the tt̄-pair
hadroproduction at the NNLO level, we have found that the total cross-sections σtt̄ at both the
Tevatron and LHC remain almost unchanged when taking very disparate initial scales µinit

R equal
to mt, 10mt, 20mt and

√
s, which is consistent with renormalization group invariance. As an

important new application, we apply PMC scale setting to study the top quark forward-backward
asymmetry. We observe that the more convergent perturbative series after PMC scale setting leads
to a more accurate top quark forward-backward asymmetry. The resulting PMC prediction on the
asymmetry is also free from the initial renormalization scale-dependence. Because the NLO PMC
scale has a dip behavior for the (qq̄)-channel at small subprocess collision energies, the importance
of this channel to the asymmetry is increased. We observe that the asymmetries Att̄

FB and App̄
FB at

the Tevatron will be increased by 42% in comparison to the previous estimates obtained by using
conventional scale setting; i.e. we obtain Att̄,PMC

FB ≃ 12.5% and App̄,PMC

FB ≃ 8.28%. Moreover, we

obtain Att̄,PMC

FB (Mtt̄ > 450 GeV) ≃ 35.0%. These predictions have a 1σ-deviation from the present
CDF and D0 measurements; the large discrepancies of the top quark forward-backward asymmetry
between the Standard Model estimate and the CDF and D0 data are thus greatly reduced.

PACS numbers: 12.38.Aw, 14.65.Ha, 11.15.Bt, 11.10.Gh

Keywords: PMC, Renormalization Scale, top quark Forward-Backward Asymmetry

I. INTRODUCTION

The top quark is the heaviest known elementary par-
ticle, and it plays a fundamental role in testing the Stan-
dard Model (SM) and the extensions of the SM. Its
production and decay channels are important probes of
new physics, and because of its large coupling to the
Higgs, the top quark production processes provide a sen-
sitive probe of electroweak symmetry breaking. The to-
tal cross-section for the top quark pair production has
been calculated up to NNLO within the MS-scheme in
Refs. [1–20]. The SM estimates, especially those obtained
by using the Principle of Maximum Conformality (PMC)
[17, 18], agree well with the experimental result which has
been measured with a precision ∆σtt̄/σtt̄ ∼ ±7% at the
Tevatron [21, 22] and ∼ ±10% at the LHC [23, 24].

The top quark forward-backward asymmetry which
originates from charge asymmetry physics [25, 26] has
also been studied at the Tevatron and LHC. Two op-
tions for the asymmetry have been used for experimental
analysis; i.e. the tt̄-rest frame asymmetry

Att̄
FB =

σ(ytt̄t > 0)− σ(ytt̄t < 0)

σ(ytt̄t > 0) + σ(ytt̄t < 0)
(1)

∗ email:sjbth@slac.stanford.edu
† email:wuxg@cqu.edu.cn

and the pp̄-laboratory frame asymmetry

App̄
FB =

σ(ypp̄t > 0)− σ(ypp̄t < 0)

σ(ypp̄t > 0) + σ(ypp̄t < 0)
, (2)

where ytt̄t is the top quark rapidity in the tt̄-rest frame
and ypp̄t is the top quark rapidity in the pp̄-laboratory
frame (or the pp̄ center-of-mass frame). The CDF and
D0 collaborations have found comparable values in the
tt̄-rest frame: Att̄,CDF

FB = (15.8± 7.5)% [27] and Att̄,D0
FB =

(19.6 ± 6.5)% [28], where the uncertainties are derived
from a combination of statistical and systematic errors.
The asymmetry in the pp̄-laboratory frame measured by
CDF is App̄,CDF

FB = (15.0 ± 5.5)% [27]. The CDF col-
laboration has also measured the dependence of Att̄

FB
with respect to the tt̄-invariant mass Mtt̄: the asymme-
try increases with Mtt̄, and Att̄

FB(Mtt̄ > 450 GeV) =
(47.5± 11.4)% [27].
These measured top quark forward-backward asymme-

tries are much larger than the usual SM estimates. For
example, the NLO QCD contributions to the asymmet-
ric tt̄-production using conventional scale setting yield
Att̄

FB ≃ 7% and App̄
FB ≃ 5% (see e.g. [29]), which are

about 2σ-deviation from the above measurements. For
the case of Mtt̄ > 450 GeV, using the MCFM pro-
gram [30], one obtains Att̄

FB(Mtt̄ > 450 GeV) ∼ 8.8%
which is about 3.4σ-deviation from the data. These dis-
crepancies have aroused great interest because of the
possibility for probing new physics beyond the Standard
Model.

HP: Hollik, Pagani, Phys.Rev. D84(2011)

Improving pQCD precision important for exposing new physics correctly!

Conventional ‘uncertainty estimate’ can be misleading 
(see also Blumlein & van Neerven, Phys.Lett. B450, 417[1999]) 

µr 6= µf (!)

5

(a) (b) (c)

FIG. 3. Representative cut diagrams contributing to the
QCD-QED interference term O(α2

sα). The wave lines stand
for the photon.

asymmetry at the so-called NNLO level:

AFB =
αs

D0

[

N1 − αs

(

D1N1

D0

)

+ α2
s

(

D2
1N1

D2
0

)]

.

Furthermore, it is natural to assume that those
higher-order terms Ni andDi with i > 2 after PMC
scale setting will also give negligible contribution 4;
the above asymmetry can thus be resummed to a
more convenient form:

AFB =
α3
sN1

α2
sD0 + α3

sD1
. (4)

• As argued by Refs. [26, 31, 32], the electromag-
netic and weak interaction will provide an extra
∼ 20% increment for the asymmetry. This shows
that the electromagnetic contribution provides a
non-negligible fraction of the QCD-based antisym-
metric cross-section with the same overall sign. The
asymmetry to be calculated thus changes to

AFB =
α3
sN1 + α2

sαÑ1 + α2Ñ0

α2
sD0 + α3

sD1
. (5)

Representative diagrams contributing to the QCD-
QED interference term Ñ1 at the order O(α2

sα) are
shown in Fig.(3). The weak contributions to the
asymmetry are obtained by changing the photon
propagator to be a Z0-propagator. The pure elec-
troweak antisymmetric O(α2) term Ñ0 arises from
|Mqq̄→γ→tt̄ +Mqq̄→Z0→tt̄|2 [32].

Based on the above considerations, the top quark
forward-backward asymmetry after PMC scale setting
can be written as

Att̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ytt̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ytt̄t < 0

)]

(6)

4 There may still be large higher-order corrections not associated
with renormalization. The nf -dependent but renormalization
scale independent terms should not be absorbed into the coupling
constant. An important example in QED case is the electron-
loop light-by-light contribution to the sixth-order muon anoma-
lous moment which is of order (α/π)3 ln(mµ/me) [57].

FIG. 4. PMC scales for the dominant asymmetry (qq̄)-channel
versus the sub-process collision energy

√
s for the top quark

pair production up to 1.96 TeV, where we have set the initial
renormalization scale µinit

r = mt = 172.9 GeV.

and

App̄,PMC
FB =

1

σtot,PMC
H1H2→tt̄X(µPMC

R )

[

σ(qq̄)
asy

(

µPMC
R ; ypp̄t > 0

)

−σ(qq̄)
asy

(

µPMC
R ; ypp̄t < 0

)

]

,(7)

where σtot
H1H2→tt̄X is total hadronic cross-section up to

NLO. The symbol σ(qq̄)
asy stands for the asymmetric cross-

section of the (qq̄)-channel which includes the above men-
tioned O(α3

s), O(α2
sα) and O(α2) terms. Here µPMC

R
stands for the PMC scale. In the denominator for the
total cross-section up to NLO, for each production chan-
nel, we need to introduce two LO PMC scales which are
for the Coulomb part and non-Coulomb part accordingly,
and one NLO PMC scale for the non-Coulomb part 5.
In the numerator, we only need the NLO PMC scale
µPMC,NLO
R for the (qq̄)-channel, since it is the only asym-

metric component. Detailed processes for deriving these
PMC scales can be found in Ref.[18], which are obtained
by using the cross-sections calculated within the MS-
scheme. We present the behaviors of the PMC scales
for the dominant asymmetric (qq̄)-channel in Fig.(4).
Note that if the cross-sections are calculated within
any other renormalization scheme, some proper scale-
displacements to the present PMC scales will be auto-
matically set by PMC scale setting so as to ensure the
scheme-independence of the final estimation.
It is interesting to observe that there is a dip for the

NLO scale µPMC,NLO
R of the (qq̄)-channel when

√
s ≃

[
√
2 exp(5/6)]mt ∼ 563 GeV, which is caused by the cor-

5 Since the channels (ij) = {(qq̄), (gg), (gq), (gq̄)} are distinct and
non-interfering, their PMC scales should be set separately [18].
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
⟩ → | − 1

2
+ 1⟩ configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved !
LF Fock state by Fock State

S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the
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7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
⟩ → | − 1

2
+ 1⟩ configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Gluon orbital angular momentum defined in physical lc gauge

Orbital Angular Momentum is a property of LFWFS

!
LC gauge

Nonzero Anomalous Moment  -->   
Nonzero  quark orbital angular momentum!

A+=0

pQED:   Ma, Hwang, Schmidt, sjb
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FIG. 2: (Color online) Comparison with experimental ratios
R = F A

2 /F D
2 . The ordinate indicates the fractional differences

between experimental data and theoretical values: (Rexp −

Rtheo)/Rtheo.

-0.2

0

0.2

NMC

-0.2

0

0.2

-0.2

0

0.2

Be/C

Al/C

Ca/C

-0.2

0

0.2

0.01 0.1 1

x

C/Li

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2

0

0.2

0.01 0.1 1

x

Fe/C

Sn/C

Pb/C

Ca/Li

FIG. 3: (Color online) Comparison with experimental data of
R = F A

2 /F C,Li
2

. The ratios (Rexp − Rtheo)/Rtheo are shown.

ters cannot be determined easily by the present data.
The χ2 analysis results are shown in comparison with

the data. First, χ2 values are listed for each nuclear
data set in Table III. The total χ2 divided by the degree
of freedom is 1.58. Comparison with the actual data is
shown in Figs. 2, 3, and 4 for the FA

2 /FD
2 , FA

2 /FC,Li
2 ,

and Drell-Yan (σpA
DY /σpA′

DY ) data, respectively. These ra-
tios are denoted Rexp for the experimental data and Rtheo

for the parametrization calculations. The deviation ra-
tios (Rexp−Rtheo)/Rtheo are shown in these figures. The
NPDFs are evolved to the experimental Q2 points, then
the ratios (Rexp − Rtheo)/Rtheo are calculated.
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FIG. 4: (Color online) Comparison with Drell-Yan data of

R = σpA
DY /σpA′

DY . The ratios (Rexp − Rtheo)/Rtheo are shown.
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FIG. 5: (Color online) Parametrization results are compared
with the data of F2 ratios F Ca

2 /F D
2 and Drell-Yan ratios

σpCa
DY /σpD

DY . The theoretical curves and uncertainties are cal-
culated at Q2=5 GeV2 for the F2 ratios and at Q2=50 GeV2

for the Drell-Yan ratios.

As examples, actual data are compared with the
parametrization results in Fig. 5 for the ratios FCa

2 /FD
2

and σpCa
DY /σpD

DY . The shaded areas indicate the ranges of
NPDF uncertainties, which are calculated at Q2=5 GeV2

for the F2 ratios and at Q2=50 GeV2 for the Drell-Yan
ratios. The experimental data are well reproduced by the
parametrization, and the the data errors agree roughly
with the uncertainty bands. We should note that the
parametrization curves and the uncertainties are calcu-
lated at at Q2=5 and 50 GeV2, whereas the data are
taken at various Q2 points. In Fig. 5, the smallest-
x data at x=0.0062 for FCa

2 /FD
2 seems to deviate from

the parametrization curve. However, the deviation comes
simply from a Q2 difference. In fact, if the theoretical ra-
tio is estimated at the experimental Q2 point, the data
point agrees with the parametrization as shown in Fig.
2.

5

Anti-Shadowing

Shadowing
M. Hirai, S. Kumano and T. H. Nagai,
“Nuclear parton distribution functions
and their uncertainties,”
Phys. Rev. C 70, 044905 (2004)
[arXiv:hep-ph/0404093].
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

No anti-shadowing in deep inelastic neutrino scattering !

Non-Universal -- Quark Specific?
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Nuclear Shadowing in QCD 

Nuclear  Shadowing not included in nuclear LFWF !  
!

 Dynamical effect due to virtual photon interacting in nucleus

Stodolsky 
Pumplin, sjb 

Gribov

Shadowing depends on understanding leading twist-diffraction in DIS

Diffraction via Reggeon gives constructive interference!
Anti-shadowing not universal
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Pomeron gives destructive interference!
Shadowing
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Regge

        constructive in phase!
thus increasing the flux reaching N2

 Reggeon DDIS produces nuclear flavor-dependent anti-shadowing
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at small xbj.

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.
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The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

Diffraction via Reggeon gives constructive interference!
Anti-shadowing
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Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Di�erent for couplings of �⇤, Z0, W±

Reggeon 
Exchange

Critical test: Tagged Drell-Yan
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Nuclear Antishadowing not universal !

Schmidt, Yang; sjb

Modifies 
NuTeV extraction of 

sin2 �W

Test in flavor-tagged  
DIS at the EIC 
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Shadowing and Antishadowing  of DIS 
Structure Functions

S. J. Brodsky, I. Schmidt and J. J. Yang, “Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,” Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

S. J. Brodsky, I. Schmidt and J. J. Yang,
“Nuclear Antishadowing in
Neutrino Deep Inelastic Scattering,”
Phys. Rev. D 70, 116003 (2004)
[arXiv:hep-ph/0409279].

Modifies 
NuTeV extraction of 

sin2 �W

Test in flavor-tagged  
lepton-nucleus collisions
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�Discovery� 

!  Ridge: Distinct long range correlation in η collimated around ΔΦ≈ 0 
                  for two hadrons in the intermediate 1 < pT, qT < 3 GeV   

Raju Venugopalan

Ridge in high-multiplicity p p collisions

-
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Ridge may reflect collision of aligned flux tubes

Bjorken, Goldhaber, sjb
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Modern Exotic Hadrons (INT-15-60W) 
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S.A. Bass, A. Majumder, J. Putschke, L. Ruan
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J. Engel, J. Carlson, V. Cirigliano
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R. Fernández, D. Kasen, G. MartÍnez-Pinedo, B.D. Metzger
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Two-Dimensional Confinement 

Interesting feature  from AdS/QCD

U(⇣) = 4⇣2 + 22(L + S � 1)
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in plane of  pair
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Possible origin of same-side CMS ridge in p p collisions

Bjorken, Goldhaber, sjbThe key point is that a multi-particle correlation should give a much more conspicuous signal

than the two-particle correlation used so far in the experimental analysis, but of course only

in that small fraction of the events where the prerequisite conditions of coincidence of narrow

strings in the projectile and target are in fact obtained. To be specific, we suggest looking at

the following vector ~V , computing its magnitude for each event. If the number of events with

large magnitude are greater than expected from chance, one would have powerful evidence

for the proposed colliding flux tube mechanism. Define

~V =
NX

i=1

[cos 2�ix̂+ sin 2�iŷ] , (1)

and obtain the distribution of ~V 2. If the particles were distributed randomly in �, then the

expectation value of ~V 2 would be N , where N is the number of particles in the event in

the given region of transverse momentum. The probability of getting a value N2 may be

estimated by introducing quadrants in the variable 2�: Assume each vector can take only

the values ±x̂ or ±ŷ, with each having a probability 1/4. Suppose the first vector is +x̂.

Then the chance that the remainder would all be in the same direction would be (1/4)N�1.

For N = 5, this would yield a probability 1/256. If, among events in which the ridge was

seen, with more than 110 particles per event, and 5 particles separated from each other by

about one unit in �⌘ in an interval of p? between 1 and 2 GeV/c, as many as 2% of the

events should show ~V 2 ⇡ 25, that could be evidence for the kind of correlation we suggest.

This exercise is equivalent to asking the probability – assuming complete randomness in � –

that all 5 particles are in either of two opposite octants of �. If they were more collimated

than that, the probability would be even smaller.

It is likely that insistence on rapidity separation of emerging particles by one unit is

unnecessary: If there were only short-range correlations, then the value of ~V 2 inevitably

would lie far below its allowed maximum. Thus counting all particles in each event in the

specified range of transverse momentum, regardless of rapidity separation, should give a

reliable measure of the correlation. Technically, ~V is just the square of the usual ellipticity

variable. An advantage of squaring is that maximal ellipticity events are easy to pick out.

Also, it is easier to think about such a scalar variable rather than a vector variable.

At this point let us take a step back to gain perspective on what could cause such

phenomena. Obviously projectile and target must overlap in impact parameter to some

extent. Dynamics, in the form of conservation of momentum or of attraction of outgoing

6

v3 from collisions of  Y junctions



We suggest that this “ridge”-like correlation may be a 
reflection of the rare events generated by the collision of 
aligned flux tubes connecting the valence quarks in the wave 
functions of the colliding protons. !
!
The “spray” of particles resulting from the approximate line 
source produced in such inelastic collisions then gives rise to 
events with a strong correlation between particles produced 
over a large range of both positive and negative rapidity. 

Multiparticle ridge-like correlations in very 
high multiplicity proton-proton collisions

Bjorken, Goldhaber, sjb
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EIC: Virtual Photon-Proton Collider

!
variable spacelike photon virtuality !

various primary flavors!
Study Ridge Phenomena with 

Controlled source

!

proton or ions
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Perspective from the photon-proton collider frame
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Electron-Ion Colliders: 	
Virtual Photon-Ion Collider

e
e’

!
variable space-like photon virtuality, 

various primary flavors

!
proton or 

ions

p

q q plane aligned with lepton scattering plane ~ cos2φ 

Perspective from the e-p collider frame

ŝ = x� ⇥ xp s

!
Front-surface dynamics: shadowing/antishadowing

 �⇤(x, k?,�)

 p,A(x, k?,�)
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High Q2, high M2Q virtual photon at LHeC acts as a precision, small bore,  
linearly oriented, flavor-dependent probe acting on a proton or nuclear target.  

Study final-state hadron multiplicity distributions, 
ridges, nuclear dependence, etc.
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• Control Collisions of Flux Tubes and Ridge Phenomena 

• Study Flavor-Dependence of Anti-Shadowing 

• Heavy Quarks at Large x; Exotic States 

• Direct, color-transparent hard subprocesses and the baryon 
anomaly 

• Tri-Jet Production and the proton’s LFWF 

• Odderon-Pomeron Interference 

• Digluon-initiated subprocesses and anomalous nuclear 
dependence of quarkonium production 

• Factorization-Breaking Lensing Corrections

Novel QCD Physics at an  
Electron-Ion Collider 



QCD Myths

• ISI and FSI are higher twist effects - only a phase 
• Momentum and Spin Sum Rules valid for nuclei - in 

fact not proven! 
• Anti-Shadowing is Universal  -                                                   

In fact, anti-shadowing is Flavor Dependent! 
• High transverse momentum hadrons arise only from 

jet fragmentation  -- baryon anomaly! 
• Heavy quarks arise only from gluon splitting —

Intrinsic Strange, Charm, and Bottom 
• Renormalization scale cannot be fixed — PMC 
• QCD condensates are vacuum effects 
• QCD gives 1042 to the cosmological constant



Valparaiso, Chile  May 19-20, 2011 

Exploring QCD, Cambridge, August 20-24, 2007 Page 9
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Valparaíso, Chile
Avenida España 1680, Valparaíso, Chile

# Contact: qnp2015@usm.cl
 
Mailing Address: Universidad Técnica Federico Santa María, Edificio T, Primer Piso, Avda. España
1680. Casilla 110-V, Valparaíso, CHILE.

Phone: (+56) (32) 2654636
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