

### The Partonic Structure of Nucleons in the Valence Regime



Thia Keppel



6<sup>th</sup> International Workshop on High Energy Physics in the LHC Era Valparaiso, Chile 2016



### Why is the valence regime interesting?

Valence region defines a hadron –

baryon number, charge, flavor content, total spin, ...

- Keen discriminator of nucleon structure models
- High x valence regime at low Q<sup>2</sup> evolves to low x, high Q<sup>2</sup> -> impact on HEP
- New generation of experiments at JLab focused on high x
- SeaQuest Drell-Yan experiment E906 at FNAL focused on high x sea
- Proposed Electron Ion Collider can also explore high x





2

### Nucleon Structure Example: F<sub>2</sub><sup>n</sup>/F<sub>2</sub><sup>p</sup> (neutron/proton) ratio at Large x

• SU(6)-symmetric wave function of the proton in the quark model:

$$p\uparrow\rangle = \frac{1}{\sqrt{18}} \left( 3u\uparrow [ud]_{S=0} + u\uparrow [ud]_{S=1} - \sqrt{2}u\downarrow [ud]_{S=1} - \sqrt{2}d\uparrow [uu]_{S=1} - 2d\downarrow [uu]_{S=1} \right)$$

- u and d quarks same shape, SU(6) spin/flavor symmetry
- In this model: d/u = 1/2,  $F_2^n/F_2^p = 2/3$  for x -> 1
- But, N and  $\Delta$  would be degenerate in mass....
- SU(6) symmetry is broken: N- $\Delta$  Mass Splitting
  - Mechanism produces mass splitting between S=1 and S=0 diquark spectator.
  - symmetric states are raised, antisymmetric states are lowered (~300 MeV).
  - S=1 suppressed => d/u = 0,  $F_2^n/F_2^p = 1/4$ , for x -> 1
- pQCD: helicity conservation  $(q \uparrow \uparrow p) => d/u = 2/(9+1) = 1/5$ ,  $F_2^n/F_2^p = 3/7$  for  $x \to 1$
- Dyson-Schwinger Eq.: Contains finite size S=0 and S=1 diquarks
  - d/u = 0.28,  $F_2^n/F_2^p = 0.49$  for x -> 1

There are more!





### Multiple predictions for Large x

$$|p\uparrow\rangle = \frac{1}{\sqrt{2}} |u\uparrow(ud)_{S=0}\rangle + \frac{1}{\sqrt{18}} |u\uparrow(ud)_{S=1}\rangle - \frac{1}{3} |u\downarrow(ud)_{S=1}\rangle$$
$$-\frac{1}{3} |d\uparrow(uu)_{S=1}\rangle - \frac{\sqrt{2}}{3} |d\downarrow(uu)_{S=1}\rangle$$

| Nucleon Model                | $F_2^n/F_2^p$ | d/u  |
|------------------------------|---------------|------|
| SU(6)                        | 2/3           | 1/2  |
| Valence Quark                | 1/4           | 0    |
| DSE contact<br>interaction   | 0.41          | 0.18 |
| DSE realistic<br>interaction | 0.49          | 0.28 |
| pQCD                         | 3/7           | 1/5  |

**Review Articles:** 

- N. Isgur, PR**D 59** (1999)
- S Brodsky et al NP **B441** (1995)
- W. Melnitchouk and A. Thomas PL B377 (1996)
- R.J. Holt and C. D. Roberts, Rev. Mod. Phys. 82 (2010)



### F<sub>2</sub><sup>n</sup>/F<sub>2</sub><sup>p</sup> (and, hence, d/u) is essentially unknown at large x: - Conflicting fundamental theory pictures

- F<sub>2</sub><sup>n</sup> data inconclusive due to uncertainties in deuterium nuclear corrections

- Translates directly to large uncertainties on d(x), g(x) parton distribution functions



#### Present status: Large uncertainties on pdfs at large x



### pdf Evolution



- DGLAP evolution allows high Q pdfs to be generated from those at lower Q
- Evolution at a value x<sub>0</sub> only requires knowledge of the pdfs at values of x ≥ x<sub>0</sub>
- As a result, high-x, low-Q feeds lower-x, higher-Q
- Wide kinematic range over which pdfs must be known

### <u>Example</u> of kinematic coverage – heavy particle production in a collider

- Mass M, center-of-mass energy  $\sqrt{s}$ , rapidity Y
- $x_a = \frac{M}{\sqrt{s}} e^Y$   $x_b = \frac{M}{\sqrt{s}} e^{-Y}$   $x_a x_b = \frac{M^2}{s}$
- $\frac{M^2}{s} \le x_i \le 1$
- Factorization scale ("Q")  $\sim M$
- Large Y with large M means one x is small, the other large.
- For a  $q\overline{q} \to M + X$  subprocess at the LHC one would have a  $\overline{q}$  at small x with a valence q at large x

### Understanding small x means understanding large x





### Why is the valence regime interesting?

- Valence region defines a hadron baryon number, charge, flavor content, total spin, ...
- Keen discriminator of nucleon structure models
- High x valence regime at low Q<sup>2</sup> evolves to low x, high Q<sup>2</sup> -> impact on HEP
- New generation of experiments at JLab focused on high x
- SeaQuest Drell-Yan experiment E906 at FNAL focused on high x sea
- Proposed Electron Ion Collider can also explore high x



Deuteron nuclear effects are a major obstacle....



Jefferson Lab



### BONUS at JLab – first experiment to use target tagging at JLab to create an effective *free* neutron target





Measure DIS electron in coincidence with proton tag

The lower the spectator proton momentum, the closer to a free neutron...

## The BONUS approach: tag spectator proton at (very) low momentum *and* large angle in electron-deuteron scattering



## Spectator Proton Tagging

- <u>Low momentum</u> spectator must escape target
  - Thin deuterium gas target
  - Low density detector media
  - Minimal insensitive material
- Large acceptance
  - Backward angles important
  - Symmetric about the target
- Detector sensitive to spectators, insensitive to background
  - Use solenoidal field to contain Moller electrons
- GEM-based radial TPC





### **GEM-based radial Time Projection Chamber**



BoNuS rTPC (low momentum p detector) Solenoid Magnet

(track curvature in TPC)





### The technique works!







### Neutron target via low momentum proton tagging *achieved*





### CTEQ-Jefferson Lab "CJ" Global Fitting Effort

High x region requires use of data at lower W,  $Q^2$ , which in turn requires for instance...

- Careful treatment of subleading 1/Q<sup>2</sup> corrections
  - target mass corrections
  - dynamical higher twists
- Correcting for nuclear effects in deuteron
  - binding + Fermi motion (well known)
  - nucleon off-shell (less well known)
- Flexible d quark parameterization



### CJ15 release this month! Still need data above x ~ 0.65



### E12-06-113 BONUS at 12 GeV



### Spectator Tagging at the EIC

The technique is uniquely suited to colliders: there is no target material absorbing low-momentum nucleons



• Secondary high dispersive ion focus ~40 m downstream of IP

#### Projected Data Example: Neutron Structure at the EIC

 $e + D \rightarrow e' + p + X$  *a la BONUS*  $\alpha_R \equiv 2(E_R + p_R^z)/(E_D + p_D^z)$ residue = free neutron



Tagged measurements require coverage for [protons] with low momenta relative to beam momentum (pT < 200 MeV, pT/ p(beam) ~ 0.8 – 1.2), and good momentum resolution ( $\Delta$ pT ~ 20 MeV).

Tagging also requires that the intrinsic momentum spread in the ion beam be small to allow for accurate reconstruction.

EIC being designed for tagging

More Projected EIC Results - F<sub>2</sub><sup>d</sup> Structure Function Relative Uncertainty



Solid lines are statistical errors, dotted lines are stat+syst in quadrature

Huge improvement in  $Q^2$  coverage and uncertainty

Proton even better (smaller neutron cross section)

Could greatly aid global pdf fitting efforts

EIC will have excellent kinematics to measure n/ p at large x!





### $F_2^{p}$ & $F_2^{d}$ Structure Functions in the nearer term

JLab12 Hall C commissioning experiment (Fall 2016 start) aims to reduce uncertainties in  $F_2^{p}$  and  $F_2^{d}$  structure functions at large x and high Q



Goal @ 12 GeV: similar precision as E00-116 (@ 6 GeV)



### Nuclear Physicists' Approach to F<sub>2</sub><sup>n</sup>

- Problem:
  - The deuteron experiments present extraction complications.
- Nuclear physicists' solution: Add another nucleon!
- <sup>3</sup>H/<sup>3</sup>He ratio: minimizes nuclear physics uncertainties

I. Afnan et al, PRC 68 (2003)





### Another approach to $F_2^n$ : DIS from A=3 nuclei

$$R(^{3}\text{He}) = \frac{F_{2}^{^{3}\text{He}}}{2F_{2}^{p} + F_{2}^{n}}$$
,  $R(^{3}\text{H}) = \frac{F_{2}^{^{3}\text{H}}}{F_{2}^{p} + 2F_{2}^{n}}$ 

- Mirror symmetry of A=3 nuclei
  - Extract F<sub>2</sub><sup>n</sup>/F<sub>2</sub><sup>p</sup> from ratio of measured <sup>3</sup>He/<sup>3</sup>H structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3He}/F_2^{^3H}}{2F_2^{^3He}/F_2^{^3H} - \mathcal{R}}$$

- R = SUPER ratio of "EMC ratios" for <sup>3</sup>He and <sup>3</sup>H
- Relies only on <u>difference</u> in nuclear effects in <sup>3</sup>H, <sup>3</sup>He
- Calculated to within 1%
- Most systematic and theoretical uncertainties cancel



**Jefferson Lab** 



### DIS from A=3 nuclei – Projected results from Fall 2016 run



Hall A BigBite Spectrometer



Test cell factor ~10 safety test, burst pressure above 3500 psi



Jefferson Lab



Polarized predictions for d/u at large x

Proton Wavefunction (Spin and Flavor Symmetric)

$$\begin{vmatrix} p \uparrow \rangle = \frac{1}{\sqrt{2}} | u \uparrow (ud)_{S=0} \rangle + \frac{1}{\sqrt{18}} | u \uparrow (ud)_{S=1} \rangle - \frac{1}{3} | u \downarrow (ud)_{S=1} \rangle$$
$$- \frac{1}{3} | d \uparrow (uu)_{S=1} \rangle - \frac{\sqrt{2}}{3} | d \downarrow (uu)_{S=1} \rangle$$

| Nucleon Model | $F_2^n/F_2^p$ | d/u | ∆u/u | ∆d/d | A <sub>1</sub> <sup>n</sup> | A <sub>1</sub> p |
|---------------|---------------|-----|------|------|-----------------------------|------------------|
| SU(6)         | 2/3           | 1/2 | 2/3  | -1/3 | 0                           | 5/9              |
| Valence Quark | 1/4           | 0   | 1    | -1/3 | 1                           | 1                |
| pQCD          | 3/7           | 1/5 | 1    | 1    | 1                           | 1                |

Polarized structure function data can provide d/u theory guidance











Measurements and Projections for A<sub>1</sub><sup>p</sup>



JLab E12-06-109, S. Kuhn, D. Crabb, A. Deur, V. Dharmawardane, T. Forest, K. Griffioen, M. Holtrop, Y. Prok, et al.

C. D. Roberts, R. Holt, S. Schmidt, Phys. Lett. B 727 (2013) pp. 249-2548

### Measurements and Projections for $A_1^n$



#### 2017 at JLab

JLab E12-06-110, X. Zheng, J.-P. Chen, Z.-E. Meziani, G. Cates et al. JLab E12-06-122, B. Wojtsekhowski, G. Cates, N. Liyanage, Z.-E. Meziani, G. Rosner, X. Zheng, et al.

### PVDIS Measurements - SoLID Proposed Setup

Solenoidal Large Intensity Device - 12 GeV Hall A at JLab Parity-violating DIS program on deuterium and hydrogen



$$A_{\rm PV} \approx -\frac{G_F Q^2}{4\sqrt{2}\pi \alpha} \left[ a_1(x) + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3(x) \right]$$

$$a_1(x) = 2 \frac{\sum C_{1q} e_q(q + \bar{q})}{\sum e_q^2(q + \bar{q})}, a_3(x) = 2 \frac{\sum C_{2q} e_q(q - \bar{q})}{\sum e_q^2(q + \bar{q})}$$

#### For high x on proton target:

$$a_1^p(x) = \left[\frac{12C_{1u}u(x) - 6C_{1d}d(x)}{4u(x) + d(x)}\right] \approx \left[\frac{1 - 0.91d(x)/u(x)}{1 + 0.25d(x)/u(x)}\right]$$



DSE - Wilson et al., Phys Rev C89, 025205 (2012)

- Three JLab 12 GeV experiments:
  - CLAS12 BoNuS spectator tagging
  - BigBite DIS <sup>3</sup>H/<sup>3</sup>He Ratio
  - SoLID PVDIS ep
- The SoLID extraction of d/u is made directly from ep DIS: no nuclear corrections

### SeaQuest at FNAL - 120 GeV protons

#### **‡ Fermilab** Today

# SeaQuest dives into a mysterious sea of particles

Feature



Scientists hope the SeaQuest detector will begin taking data in a couple of weeks. *Photo: Reidar Hahn* 

32

#### FNAL E906

Longer term: Polarized FNAL, J-PARC at 50 GeV





### Drell-Yan measurement of anti-quark distributions



No model predicts dbar/ubar <1.

JAIS



### Probing the Valence Regime: Summary

- JLab at 12 GeV will access the regime where valence quarks dominate
- First experiments *THIS FALL*!
  - Hall C F2p,n
  - Hall A 3H/3He
  - Ongoing program
- Also new data from SeaQuest at FNAL
- EIC on the horizon
- Dedicated theory efforts also underway
  - "CJ", (CTEQ-Jefferson Lab) and "JAM" collaborations
- Expect large improvements in our understanding of the valence regime over the next 1-5 years!







Thank You!





### Present status: Neutron to proton structure function ratio







**Drell-Yan Interactions** 







### Large *x* - Large Nuclear Effects





JA

