

The Dynamical Composite Higgs

Based on Gersdorff, EP, Rosenfeld, 1502.07347

Eduardo Pontón

Instituto de Física Teórica -UNESP & ICTP-SAIFR

After the Higgs Boson Discovery...

Towards Precision Measurements

Unfinished Business

- Higgs width $< 5.4 \times \Gamma_{SM}$ (from off-shell, $ZZ \rightarrow 4l$) CMS-HIG-14-002 (better from fits to rates, with some assumptions)

- Higgs self-interactions: trilinear, (quartic)

- Couplings to lighter fermions

(may never know if the electron mass really is connected to the 125 GeV Higgs)

Higgs Precision Measurements

Why bother measuring the Higgs properties as precisely as possible?

- Deviations from SM expectations would signal new physics
- More fundamentally: test point-like nature of the Higgs boson

Contrast to a particle like the electron:

- e^{-} Compton wavelength ~ 400 fm $\gg 10^{-3}$ fm ~ scales probed so far
 - → This is a pretty darn point-like particle.

For the Higgs boson, our current resolution is of order its mass:

Is the Higgs like the "electron", or rather like the "proton"?

Time-honored history for progress in particle physics!

If the Higgs is a composite state, the underlying dynamics may be the key to an understanding of EWSB as a dynamical outcome of the theory!

In this talk I will focus on ``model-building" aspects, more than the phenomenology of such constructions...

Can entertain a number of symmetry breaking patterns:

G	\mathcal{H}	N_G	NGBs rep. $[\mathcal{H}] = \operatorname{rep.}[\operatorname{SU}(2) \times \operatorname{SU}(2)]$
SO(5)	SO(4)	4	${\bf 4}=({\bf 2},{\bf 2})$
SO(6)	$\mathrm{SO}(5)$	5	${f 5}=({f 1},{f 1})+({f 2},{f 2})$
SO(6)	$SO(4) \times SO(2)$	8	$\mathbf{4_{+2}} + \mathbf{\bar{4}_{-2}} = 2 \times (2, 2)$
SO(7)	SO(6)	6	${f 6}=2 imes ({f 1},{f 1})+({f 2},{f 2})$
SO(7)	G_2	7	${f 7}=({f 1},{f 3})+({f 2},{f 2})$
SO(7)	$SO(5) \times SO(2)$	10	${f 10_0}=({f 3},{f 1})+({f 1},{f 3})+({f 2},{f 2})$
SO(7)	$[SO(3)]^{3}$	12	$({f 2},{f 2},{f 3})=3 imes({f 2},{f 2})$
$\operatorname{Sp}(6)$	$\operatorname{Sp}(4) \times \operatorname{SU}(2)$	8	$(4, 2) = 2 \times (2, 2), (2, 2) + 2 \times (2, 1)$
SU(5)	$SU(4) \times U(1)$	8	${f 4}_{-5}+{f ar 4}_{+{f 5}}=2 imes ({f 2},{f 2})$
SU(5)	SO(5)	14	${f 14}=({f 3},{f 3})+({f 2},{f 2})+({f 1},{f 1})$
SO(9)	SO(8)	8	${f 8}=({f 2},{f 2})_1+({f 2},{f 2})_{-1}$

Modified from Mrazek et. al 2011

Focus has been on the study of the low-energy consequences that follow from assuming the corresponding symmetry

Microscopic Realizations?

What sort of new physics could lead to the desired symmetry breaking pattern? Such UV questions have received comparatively little attention (for good reasons)

- If anything, we are only starting to explore the low-energy side of such phenomena The EFT approach is bound to be the most relevant tool, probably for a while
- We have very few tools to analyze the physics of strongly-coupled theories

One options is to appeal to SUSY, e.g.	Kitano, Luty & Nakal, 1206.4053	
	Caracciolo, Francesco, Parolini & Serone, 1211.7290	
	Parolini, 1405.4875	

Here we look for non-SUSY UV completions (à la Nambu-Jona-Lasinio)

Largely inspired by the seminal work of Bardeen, Hill and Lindner (1989)

See also: (Cheng, Dobrescu & Jiayin, 2013) (Cheng & Jiayin, 2014)

(Gersdorff, EP, Rosenfeld, 2015)

Our work: ``pNGB Top condensation"

The MCHM

(i.e. Minimal Composite Higgs Model)

Agashe, Contino, Pomarol '04;

Focus on the minimal group, $G = SO(5) \times U(1)_X$, which

- contains the SM group: $SU(2)_L \times U(1)_Y$
- contains 4 (p)NGB's that can be identified with a Higgs doublet
- contains custodial symmetry $SU(2)_L \times SU(2)_R \sim SO(4) = \mathcal{H}$

Pattern of symmetry breaking (EW sector):

Gauge: $SU(2)_{L} \times U(1)_{Y} \longrightarrow U(1)_{Q}$ \cap Global: $SO(5)_{E \sim f} SU(2)_{L} \times SU(2)_{R} \xrightarrow{E \sim v} SU(2)_{L+R} \text{ custodial}$

Our (modest) Goal

Exhibit a UV completion to the SO(5)/SO(4) symmetry breaking pattern, such that

- The Higgs constituents are identified...
- as well as the interactions that hold them together.

As we will see, the resulting model has itself a cutoff and needs to be UV completed:

- This would happen at a scale parametrically above the weak scale...
- ... about which we know essentially nothing: it may be that ``technicolor-like" constructions can be revived and applied at this higher scale
 We have provided a simple, renormalizable, UV completion, but we emphasize that it is wise to remain agnostic about the physics at that scale.

 $G_{\text{strong}} \times G_{\text{QCD}} \times [SO(5) \times U(1)_X \subset SU(5) \times U(1)_X]^{\text{approx.}}$

 $G_{\text{strong}} \times G_{\text{QCD}} \times [SO(5) \times U(1)_X \subset SU(5) \times U(1)_X]^{\text{approx.}}$

Optional strong dynamics, operational (somewhat) above scales of interest

 $G_{\text{strong}} \times G_{\text{QCD}} \times [SO(5) \times U(1)_X \subset SU(5) \times U(1)_X]^{\text{approx.}}$

Optional strong dynamics, operational (somewhat) above scales of interest QCD or perhaps an extension (e.g. top-color)

 $G_{\text{strong}} \times G_{\text{QCD}} \times [SO(5) \times U(1)_X \subset SU(5) \times U(1)_X]^{\text{approx.}}$

Optional strong dynamics, operational (somewhat) above scales of interest QCD or perhaps an extension (e.g. top-color)

 $SU(2)_L \times U(1)_Y \subset SO(5) \times U(1)_X$

Quantum numbers of the LH (t, b) in the SM

$$F = \begin{pmatrix} I \\ B \\ \chi \\ T' \\ S \end{pmatrix}$$

S'

After all is said and done:

The observed top and bottom are linear combinations of the previous states (sharing the appropriate quantum numbers)

Simplified Limits

The ``composite sector" fills SU(5) multiplets [We will see shortly how this is reduced to SO(5)]

However, we must keep in mind that $SO(5) \subset SU(5)$ is only an approximate symmetry:

- a) Broken (explicitly) by the SM weak gauge interactions
- b) The ``elementary sector" does not fill SU(5), nor SO(5), multiplets
- c) Only the (gauged) SM symmetry must be preserved
 - → Global symmetry can be (softly) broken by mass terms

Simplified Limits

The ``composite sector" fills SU(5) multiplets [We will see shortly how this is reduced to SO(5)] However, we must keep in mind that $SO(5) \subset SU(5)$ is only an approximate symmetry: a) Broken (explicitly) by the SM weak gauge interactions

 $Q^{1} = \begin{pmatrix} T \\ B \end{pmatrix}$ $Q^{2} = \begin{pmatrix} \chi \\ T' \end{pmatrix}$

b) The ``elementary sector" does not fill SU(5), nor SO(5), multiplets

c) Only the (gauged) SM symmetry must be preserved

→ Global symmetry can be (softly) broken by mass terms

$$\mathcal{L}_{\text{Fermion}}^{mass} = -\mu_{QQ} \bar{Q}_{L}^{1} Q_{R}^{1} - \mu_{QQ}^{\prime} \bar{Q}_{L}^{2} Q_{R}^{2} - \mu_{SS} \bar{S}_{L} S_{R} - \mu_{1} \bar{S}_{L}^{\prime} S_{R}^{\prime} + \text{h.c.}$$

$$-\mu_{51} \bar{S}_{L} S_{R}^{\prime} - \mu_{51}^{\prime} \bar{S}_{L}^{\prime} S_{R} + \text{h.c.}$$

$$-\mu_{tS} \bar{S}_{L} t_{R} - \mu_{tS}^{\prime} \bar{S}_{L}^{\prime} t_{R} - \mu_{qQ} \bar{q}_{L} Q_{R}^{1} + \text{h.c.}$$

Mixing between composite and elementary sectors

Simplified Limits

$$\mathcal{L}_{\text{Fermion}}^{mass} = -\mu_{QQ} \bar{Q}_{L}^{1} Q_{R}^{1} - \mu_{QQ}^{\prime} \bar{Q}_{L}^{2} Q_{R}^{2} - \mu_{SS} \bar{S}_{L} S_{R} - \mu_{1} \bar{S}_{L}^{\prime} S_{R}^{\prime} + \text{h.c.}$$
$$-\mu_{51} \bar{S}_{L} S_{R}^{\prime} - \mu_{51}^{\prime} \bar{S}_{L}^{\prime} S_{R} + \text{h.c.}$$
$$-\mu_{tS} \bar{S}_{L} t_{R} - \mu_{tS}^{\prime} \bar{S}_{L}^{\prime} t_{R} - \mu_{qQ} \bar{q}_{L} Q_{R}^{1} + \text{h.c.}$$

For simplicity, we can decouple some states without changing the underlying mechanism:

- 1) "Extended" Model: $\mu'_{51} \to \infty$ to decouple (S'_L, S_R) Light states: $F_L + (Q_R^1, Q_R^2) + S_R + (q_L, t_R)$ (relabel $\mu_{51} \to \mu_{SS}$ and $S'_R \to S_R$)
- 2) "<u>Minimal" Model</u>: also $\mu_{qQ} \rightarrow \infty$ to decouple (q_L, Q_R^1) Light states: $F_L + Q_R^1 + S_R + t_R$

Both limits share an approximate $SO(5)_L \subset SU(5)_L$, which is the central player

From SU(5) to SO(5)

The SU(5) symmetry can be naturally reduced to SO(5) by 4-fermion operators

Minimal field content:

(Gersdorff, EP, Rosenfeld, 2015)

 $F_L \to 5 \text{ of } SO(5), \ Q_X = 2/3$ $S_R \to 1 \text{ of } SO(5), \ Q_X = 2/3$

Two SO(5) structures: if $G_S = G'_S \longrightarrow 2G_S |\bar{S}_R F_L^i|^2$ is SU(5) invariant

The symmetry breaking pattern of interest is $\int I V V(1)_X \to SO(4)_L \times U(1)_X$ not crucial here

$$\mathcal{L}_{F} = i\bar{F}_{L}\partial F_{L} + i\bar{S}_{R}\partial S_{R} \quad \longleftarrow \text{ no mass terms allowed}$$
$$+ \frac{G_{S}}{2} \left(\bar{S}_{R}F_{L} + \bar{F}_{L}S_{R}\right)^{2} - \frac{G'_{S}}{2} \left(\bar{S}_{R}F_{L} - \bar{F}_{L}S_{R}\right)^{2}$$

Nambu & Jona-Lasinio, 1961 Nambu, 1988 Miranski et. al., 1989 Bardeen, Hill and Lindner, 1989

$$\mathcal{L}_{F} = i\bar{F}_{L}\partial F_{L} + i\bar{S}_{R}\partial S_{R} \quad \longleftarrow \text{ no mass terms allowed}$$
$$+ \frac{G_{S}}{2} \left(\bar{S}_{R}F_{L} + \bar{F}_{L}S_{R}\right)^{2} - \frac{G'_{S}}{2} \left(\bar{S}_{R}F_{L} - \bar{F}_{L}S_{R}\right)^{2}$$

Nambu & Jona-Lasinio, 1961 Nambu, 1988 Miranski et. al., 1989 Bardeen, Hill and Lindner, 1989

Upshot:

- 4-fermion theory: effective theory with a cutoff $\ \Lambda \sim G_S^{-1/2}$
- If strength above a certain critical value, $G_S \Lambda^2 \gtrsim \mathcal{O}(8\pi^2)$, a non-vanishing condensate arises: $\langle \bar{F}_L S_R \rangle \neq 0 \longrightarrow$ breaking of the global SO(5)

$$\mathcal{L}_{F} = i\bar{F}_{L}\partial F_{L} + i\bar{S}_{R}\partial S_{R} \quad \longleftarrow \text{ no mass terms allowed}$$
$$+ \frac{G_{S}}{2} \left(\bar{S}_{R}F_{L} + \bar{F}_{L}S_{R}\right)^{2} - \frac{G_{S}'}{2} \left(\bar{S}_{R}F_{L} - \bar{F}_{L}S_{R}\right)^{2}$$

Nambu & Jona-Lasinio, 1961 Nambu, 1988 Miranski et. al., 1989 Bardeen, Hill and Lindner, 1989

Upshot:

- 4-fermion theory: effective theory with a cutoff $~\Lambda \sim G_S^{-1/2}$
- If strength above a certain critical value, $G_S \Lambda^2 \gtrsim \mathcal{O}(8\pi^2)$, a non-vanishing condensate arises: $\langle \bar{F}_L S_R \rangle \neq 0 \longrightarrow$ breaking of the global SO(5)
- Goldstone modes, as well as a heavy mode, can be identified from

(becomes exact in the large N_c , i.e. planar limit: study a ``gap equation")

• We will assume that only G_S (and not G'_S) is super-critical

$$\mathcal{L}_{F} = i\bar{F}_{L}\partial F_{L} + i\bar{S}_{R}\partial S_{R} \quad \longleftarrow \text{ no mass terms allowed}$$
$$+ \frac{G_{S}}{2} \left(\bar{S}_{R}F_{L} + \bar{F}_{L}S_{R}\right)^{2} - \frac{G'_{S}}{2} \left(\bar{S}_{R}F_{L} - \bar{F}_{L}S_{R}\right)^{2}$$

Nambu & Jona-Lasinio, 1961 Nambu, 1988 Miranski et. al., 1989 Bardeen, Hill and Lindner, 1989

To understand the NJL mechanism, it is easier and physically more transparent to use a trick: rewrite the Lagrangian with the help of an auxiliary scalar field Φ

$$\mathcal{L}_F = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$$
$$-\frac{1}{2G_S} \Phi^2 - \Phi(\bar{S}_R F_L + \text{h.c.})$$

From the EOM, can think of Φ as the fermion bilinear $\sim \bar{F}_L S_R$

$$\mathcal{L}_F = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$$
$$-\frac{1}{2G_S} \Phi^2 - \Phi(\bar{S}_R F_L + \text{h.c.})$$

$$\mathcal{L}_F = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$$
$$+ \frac{1}{2} (\partial_\mu \Phi)^2 - \frac{1}{4} \lambda \left(\Phi^2 - \hat{f}^2 \right)^2 - \xi \Phi \left(\bar{S}_R F_L + \text{h.c.} \right)$$

Fermion loops induce:

• kinetic term for Φ • negative mass squared • quartic self-interactions F_L $\Phi \longrightarrow F_L$ $\Phi \longrightarrow F_L$ $\Phi \longrightarrow \Phi$ $\Phi \longrightarrow \Phi$

When the induced kinetic term becomes sizeable (Yukawa coupling $\xi \ll \infty$), we can think of Φ as a proper, dynamical degree of freedom, corresponding to a fermion bound state. This requires a gap between the bound state mass and the cutoff Λ . The Yukawa interaction induces a dynamical mass for (S_L, S_R)

$$\mathcal{L}_F = i\bar{F}_L \partial F_L + i\bar{S}_R \partial S_R$$
$$+ \frac{1}{2} (\partial_\mu \Phi)^2 - \frac{1}{4} \lambda \left(\Phi^2 - \hat{f}^2 \right)^2 - \xi \Phi \left(\bar{S}_R F_L + \text{h.c.} \right)$$

(Quasi) IR Fixed points:

For SO(N) symmetry and
$$N_c$$
 colors:
 $16\pi^2 \beta_{\xi^2} = (4N_c + N + 5)\xi^4$
 $16\pi^2 \beta_{\lambda} = 2(N + 8)\lambda^2 - 8N_c \xi^4 + 8N_c \xi^2 \lambda \overset{\mathfrak{N}_c}{\succ} 1.0$
imply $\lambda = a_* \xi^2$ hence:
 $m_{\mathcal{H}}^2 = 2a_* m_S^2$
For $N = 5$ and $N_c = 3$: $a_* = 12/13$

pNGB Top Condensation

The $SO(5) \rightarrow SO(4)$ breaking generates 4 NGB's:

May think of the NGB's as composite states of the ``top sector" described above.

At loop level, the small terms that break the SO(5) can lead to vacuum misalignment:

$$\langle H^0 \rangle = \frac{1}{\sqrt{2}} \hat{f} \sin(\langle h^{\hat{4}} \rangle / f) \qquad \langle \Phi_5 \rangle = \hat{f} \cos(\langle h^{\hat{4}} \rangle / f)$$

To what extent is EWSB an outcome of the dynamics?

Need to compute the Coleman-Weinberg potential...

As already mentioned, a subroup $SU(2)_L \times U(1)_Y \supset SO(5) \times U(1)_X$ is (weakly) gauged, so as to embed the SM gauge interactions.

It is also possible to describe massive spin-1 resonances, that might arise from the underlying strong dynamics.

Such composite spin-1 fields can arise from the ``vector channel" 4-fermion interactions:

$$\mathcal{L}_V = -\frac{G_{\rho}}{2} (J^{A\,\mu})^2 - \frac{G_X}{2} (J^{X\,\mu})^2$$

involving the conserved currents

$$J^{A\mu} = (\bar{Q}_L, \bar{S}_L) T^A \gamma^\mu \begin{pmatrix} Q_L \\ S_L \end{pmatrix}, \qquad J^{X\mu} = q_X (\bar{Q}_L \gamma^\mu Q_L + \bar{S}_L \gamma^\mu S_L + \bar{S}_R \gamma^\mu S_R)$$

Such composite spin-1 fields can arise from the ``vector channel" 4-fermion interactions:

$$\mathcal{L}_V = -\frac{G_{\rho}}{2} (J^{A\,\mu})^2 - \frac{G_X}{2} (J^{X\,\mu})^2$$

Such composite spin-1 fields can arise from the ``vector channel" 4-fermion interactions:

$$\mathcal{L}_V = -\frac{G_{\rho}}{2} (J^{A\,\mu})^2 - \frac{G_X}{2} (J^{X\,\mu})^2$$

The analysis proceeds in complete analogy to the analysis of the ``scalar channels":

- Rewrite 4-fermion interactions in terms of auxiliary spin-1 fields
- These become dynamical due to quantum effects, thus describing the corresponding (composite) bound states
 - <u>Note</u>: the corresponding gauge symmetry can be made explicit using the *Hidden Local Symmetry* formalism Bando et. al., 1988

Such composite spin-1 fields can arise from the ``vector channel" 4-fermion interactions:

$$\mathcal{L}_V = -\frac{G_{\rho}}{2} (J^{A\,\mu})^2 - \frac{G_X}{2} (J^{X\,\mu})^2$$

The analysis proceeds in complete analogy to the analysis of the ``scalar channels":

- Rewrite 4-fermion interactions in terms of auxiliary spin-1 fields
- These become dynamical due to quantum effects, thus describing the corresponding (composite) bound states

<u>Note</u>: the corresponding gauge symmetry can be made explicit using the *Hidden Local Symmetry* formalism Bando et. al., 1988

• Upshot:

Massive spin-1 resonances with masses $m_{
ho}$, m_a and m_X (coupling $\sim g_{
ho}$) Light spin-1 resonances that get mass only after EWSB

Electroweak Symmetry Breaking

Tree-level potential for pNGB's vanishes, but is generated at 1-loop from

- Spin-1 sector: gauging of SM subgroup \longrightarrow proportional to g, g'
- Spin-1/2 sector: SO(5) soft breaking terms $\mu_{tS}, \mu_{QQ}, \mu_{QQ}'$

Calculability?

- Spin-1 contributions are super-soft, cutoff at $m_{
 ho}$
- Spin-1/2 contributions are only *soft*: logarithmically divergent

However:

Counterterm for Higgs mass δm^2 displays an IR quasi-fixed point

$$\delta m^2 = -r_* \mu_{\text{eff}}^2$$
 $\mu_{\text{eff}}^2 \equiv 2\mu_{tS}^2 - \mu_{QQ}^2 - \mu_{QQ}^{\prime 2}$

Electroweak Symmetry Breaking

Upshot: Coleman-Weinberg potential is effectively super-soft!

$$V = -\frac{\alpha}{2}s_{h}^{2} + \frac{\beta}{4}s_{h}^{4} + \mathcal{O}(s_{h}^{6})$$

- Gauge interactions: prefer ``vacuum alignment" (no EWSB)
- Yukawa interactions (dominated by top): can induce EWSB

Parameter space:

 $egin{array}{lll} \xi, g_{
ho} & \widehat{f}, \ \mu_{QQ}, \mu_{QQ}', \mu_t \end{array}$

$$\begin{cases}
f \\
s_S, \mu_{qQ}
\end{cases} \quad \begin{cases}
\text{masses:} \quad m_S, m_Q, m'_Q, m_\rho, m_a, m_t \\
\text{Mixing angles:} \quad s_R = \frac{\mu_{tS}}{m_S}, \quad s_L = \frac{\mu_{qQ}}{m_Q}
\end{cases}$$

Electroweak Symmetry Breaking

Look for regions of parameter space with EWSB and correct top and Higgs masses

Then test for general agreement with EW precision measurements (oblique)

Spectrum features

Phenomenology: Brief Remarks

• Fermionic resonances, some with exotic charges Characteristic of SO(5)/SO(4) constructions

Contino & Servant, 2008 Mrazek & Wulzer, 2009 Dissertori et. al., 2010

- The radial mode \mathcal{H} (whose mass is predicted in terms of the singlet fermion mass) Smoking gun of the present microscopic scenario!
- With Gersdorff, Fichet, and Rosenfeld, currently evaluating the LHC discovery potential.

Preliminary results based on $pp \to \mathcal{H} \to VV \to JJ$ indicate a reach of around 3 TeV at the high-luminosity LHC...

(crucial effect of light generations)

Summary

- Higgs compositeness: a fundamental question to be settled experimentally Models of Higgs compositeness a necessary ingredient
- While not as urgent, microscopic UV completions can put EFT studies on more solid ground
- In this talk, we presented a first step that exhibits explicitly both the Higgs constituents and the interactions that hold them together
- Can build a further (renormalizable) UV completion that leads to the required 4-fermion interactions, in the desired region of parameter space (see 1502.07340)
- It will be interesting to use such an explicit construction to ask phenomenological questions, such as
 - When could deviations be expected to first show up
 - How would the top content of the Higgs first be manifested
 - What would it take to establish such a picture

The answers to such questions may carry more general lessons

Thank you!

Backup Slides

Fermion Spectrum

The fermion mass spectrum (``extended model") is determined by:

- The spontaneous breaking of $SO(5) \rightarrow SO(4)$: $\xi \hat{f}$
- (Soft) explicit SO(5) breaking terms: μ_i
- EW symmetry breaking (misalignment): $s_h = \sin(h/f)$

$$\mathcal{L}_{2/3} = - \begin{pmatrix} \bar{S}_L & \bar{Q}_L^{2,2} & \bar{Q}_L^{1,1} & \bar{q}_L \end{pmatrix} \begin{pmatrix} \hat{\xi}\hat{f}c_h & 0 & \mu_{tS} & 0\\ \hat{\xi}\hat{f}\frac{s_h}{\sqrt{2}} & \mu'_{QQ} & 0 & 0\\ \hat{\xi}\hat{f}\frac{s_h}{\sqrt{2}} & 0 & 0 & \mu_{QQ}\\ 0 & 0 & 0 & \mu_{qQ} \end{pmatrix} \begin{pmatrix} S_R\\Q_R^{2,2}\\t_R\\Q_R^{1,1} \end{pmatrix} + \text{h.c.} ,$$

``Heavy" states:

1

$$m_S^2 \approx \xi^2 \hat{f}^2 + \mu_{tS}^2$$
 $m_Q'^2 \approx \mu_{QQ}'^2$ $m_Q^2 = \mu_{QQ}^2 + \mu_{qQ}^2$
The second states in the seco

 \mathcal{Q}

Spectrum features

Model			m_h	EWPT	Spectrum	Remarks
Minimal		$\tau = 0$	too light	经成为管		
wiiminai		$ au \neq 0$	\checkmark	×		
Extended	$\mu_{QQ} = \mu'_{QQ}$	$\tau = 0$	too light			
		$\tau > 0$	\checkmark	×		$\epsilon \ll 1$
		$\tau < 0$	\checkmark	\checkmark	$m_{\mathcal{H}} < m_S < m'_Q < m_Q$	$\epsilon\gtrsim 1$
	$\mu_{QQ} \neq \mu'_{QQ}$	$\tau = 0$	\checkmark	\checkmark	$m_Q < m'_Q, m_S$	$\epsilon \ll 1$
		$\tau > 0$	\checkmark	\checkmark	$m_Q < m'_Q, m_S$	$\epsilon \ll 1$
		$\tau < 0$	\checkmark	\checkmark		
						€ Ξ

The recently measured Higgs mass of ~125 GeV, as well as precision measurements, impose significant restrictions on the parameter space.

Sometimes, certain mass hierarchies between heavy vector-like fermions and the heavy scalar (radial mode) are singled-out.

Naturalness

 $P \in \{\hat{f}, f_{\rho}, \xi, g_{\rho}, \mu_{tS}, \mu_{QQ}, \mu_{QQ'}, \tau\}$

$$\frac{\Delta \alpha_{\mu_{tS}}}{\alpha} \approx \frac{4r_*\mu_{tS}^2}{r_v m_h^2}$$

A Renormalizable UV Model

Consider a $SU(N_c) \times SU(N_c)$ gauge theory, spontaneously broken to the diagonal (as in top-color models)

<u>Field content</u>: SM quarks and any new vector-like states charged under first $SU(N_c)$, hence no anomalies. Diagonal unbroken subgroup identified with QCD $N_c = 3$

- Focus on $F_L^i (i = 1, ..., 5)$ and S_R of the main part of the talk.
- Add a (neutral) real scalar $\Xi^i (i = 1, ..., 5)$ with mass of the same order as the broken gauge bosons (this scalar may itself be a composite state)

In unitary gauge:

$$\mathcal{L}_{\rm UV} \supset -\frac{1}{2} M_{\Xi}^2 \Xi^2 + y \left(\bar{S}_R \,\Xi^i F_L^i + \text{h.c.} \right) + \frac{1}{2} \, M_G^2 G_\mu G^\mu + \frac{1}{2} \, \hat{g} \, G_\mu^A (\bar{S}_R \gamma^\mu \lambda^A S_R + \bar{F}_{L,i} \gamma^\mu \lambda^A F_L^i) \,\,,$$

Integrating out the heavy fields:

$$\mathcal{L} \supset \frac{y^2}{2M_{\Xi}^2} \, (\bar{S}_R F_L^i + \text{h.c.})^2 - \frac{\hat{g}^2}{8M_G^2} (\bar{S}_R \gamma^\mu \lambda^A S_R + \bar{F}_{L,i} \gamma^\mu \lambda^A F_L^i)^2$$

A Renormalizable UV Model

$$\mathcal{L} \supset rac{y^2}{2M_{\Xi}^2} \, (ar{S}_R F_L^i + ext{h.c.})^2 - rac{\hat{g}^2}{8M_G^2} (ar{S}_R \gamma^\mu \lambda^A S_R + ar{F}_{L,i} \gamma^\mu \lambda^A F_L^i)^2$$

A Renormalizable UV Model

$$\mathcal{L} \supset rac{y^2}{2M_{\Xi}^2} \, (ar{S}_R F_L^i + ext{h.c.})^2 - rac{\hat{g}^2}{8M_G^2} (ar{S}_R \gamma^\mu \lambda^A S_R + ar{F}_{L,i} \gamma^\mu \lambda^A F_L^i)^2$$

After Fierz rearrangement, this leads to the ``scalar channel" 4-fermion int's, with

$$G_S = \frac{\hat{g}^2}{2M_G^2} + \frac{y^2}{M_{\Xi}^2} , \qquad G'_S = \frac{\hat{g}^2}{2M_G^2}$$

One naturally obtains $G_S > G'_S$: one super-critical, the other sub-critical.

At the same time, one finds the required ``vector channel" 4-fermion interactions