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After the Higgs Boson Discovery…
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- Higgs self-interactions: trilinear, (quartic)

- Couplings to lighter fermions
(may never know if the electron mass really is connected to the 125 GeV Higgs)

FIG. 1: Feynman diagrams for gg → HH in the Standard Model.

In this paper, we study the effects of heavy colored fermions on the gluon fusion double

Higgs production rate and show that agreement with single Higgs production requires the

double Higgs rate to be close to that of the Standard Model. We demonstrate how this

can be understood in terms of the effective operator approach of Ref. [36] and discuss the

limitations of the low energy theorem for gg → HH . Interestingly, composite Higgs models

and little Higgs models receive potentially large corrections to the gg → HH process from

the non-renormalizable operator ttHH . The observation of such a large effect would be a

“smoking gun” signal for such models [33, 34, 45].

II. DOUBLE HIGGS PRODUCTION

1. The Standard Model

In the Standard Model, double Higgs production from a gluon-gluon initial state arises

from the Feynman diagrams shown in Fig. 1. The result is sensitive to new colored objects

(fermions or scalars) in the loops and to the Higgs trilinear self-coupling. The amplitude for

ga,µ(p1)gb,ν(p2) → H(p3)H(p4) is

Aµν
ab =

αs

8πv2
δab

[

P µν
1 (p1, p2)F1(s, t, u,m

2
t ) + P µν

2 (p1, p2, p3)F2(s, t, u,m
2
t )

]

, (1)

where P1 and P2 are the orthogonal projectors onto the spin-0 and spin-2 states respectively,

P µν
1 (p1, p2) = gµν −

pν1p
µ
2

p1 · p2
,

P µν
2 (p1, p2, p3) = gµν +

2

sp2T

(

m2
Hp

ν
1p

µ
2 − 2p1.p3 p

µ
2p

ν
3 − 2p2.p3 p

ν
1p

µ
3 + s pµ3p

ν
3

)

, (2)

s, t, and u are the partonic Mandelstam variables,

s = (p1 + p2)
2 , t = (p1 − p3)

2 , u = (p2 − p3)
2 , (3)

4

- Higgs width < 5.4⇥ �SM (from o↵-shell, ZZ ! 4l) CMS-HIG-14-002

(better from fits to rates, with some assumptions)

Unfinished Business



Why bother measuring the Higgs properties as precisely as possible?

Contrast to a particle like the electron:

Compton wavelengthe� ⇠ 400 fm � 10�3 fm ⇠ scales probed so far

This is a pretty darn point-like particle.

For the Higgs boson, our current resolution is of order its mass:

Is the Higgs like the "electron", or rather like the "proton"?

Time-honored history for progress in particle physics!

• More fundamentally: test point-like nature of the Higgs boson

• Deviations from SM expectations would signal new physics

Higgs Precision Measurements 



Composite Higgs?

If the Higgs is a composite state, the underlying dynamics may be the key 
to an understanding of EWSB as a dynamical outcome of the theory!

In this talk I will focus on ``model-building” aspects, more than the phenomenology 
of such constructions…
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Composite Higgs

BSM: Standard Model  +  Strongly coupled sector

Strong dynamics

New fermions (and scalars, if SUSY)
G

Sufficiently large  
global symmetry

( SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇢ G )(

G ! H⇤
Dynamically generated

scale

Set of resonances

...

• ``Technicolor”, no need of Higgs (ruled out)SU(2)L ⇥ U(1)Y ⇢ H

•
⇤SM group unbroken at

Amongst resonances: state with Higgs quantum numbers
SU(2)L ⇥ U(1)Y ⇢ H

Mass gap: Higgs as a pNGB



G H NG NGBs rep.[H] = rep.[SU(2)⇥ SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) ⇥ SO(2) 8 4+2 + 4̄�2 = 2⇥ (2,2)
SO(7) SO(6) 6 6 = 2⇥ (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) ⇥ SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3⇥ (2,2)
Sp(6) Sp(4) ⇥ SU(2) 8 (4,2) = 2⇥ (2,2), (2,2) + 2⇥ (2,1)
SU(5) SU(4) ⇥ U(1) 8 4�5 + 4̄+5 = 2⇥ (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)
SO(9) SO(8) 8 8 = (2,2)1 + (2,2)�1

Symmetries

Can entertain a number of symmetry breaking patterns:

Focus has been on the study of the low-energy consequences that 
follow from assuming the corresponding symmetry

Modified from Mrazek et. al 2011



Microscopic Realizations?

What sort of new physics could lead to the desired symmetry breaking pattern?

Such UV questions have received comparatively little attention (for good reasons)

• If anything, we are only starting to explore the low-energy side of such phenomena

The EFT approach is bound to be the most relevant tool, probably for a while

• We have very few tools to analyze the physics of strongly-coupled theories

One options is to appeal to SUSY, e.g. 
Caracciolo, Francesco, Parolini & Serone, 1211.7290

Parolini, 1405.4875

Kitano, Luty & Nakal, 1206.4053

Here we look for non-SUSY UV completions (à la Nambu-Jona-Lasinio)

Largely inspired by the seminal work of Bardeen, Hill and Lindner (1989)

(Cheng, Dobrescu & Jiayin, 2013)
(Cheng & Jiayin, 2014)

See also:

Our work: ``pNGB Top condensation"
(Gersdorff, EP, Rosenfeld, 2015)



The MCHM

• contains custodial symmetry

SU(2)L ⇥ U(1)Y

E ⇠ f E ⇠ v

U(1)Q

SO(5) SU(2)L ⇥ SU(2)R SU(2)L+R custodial

⇢

Pattern of symmetry breaking (EW sector):

Gauge:

Global:

Agashe, Contino, Pomarol ’04;

(i.e. Minimal Composite Higgs Model)

Focus on the minimal group,

• contains the SM group: SU(2)L ⇥ U(1)Y

• contains 4 (p)NGB’s that can be identified with a Higgs doublet

, whichG = SO(5)⇥ U(1)X

SU(2)L ⇥ SU(2)R ⇠ SO(4) = H



Our (modest) Goal

Exhibit a UV completion to the SO(5)/SO(4) symmetry breaking pattern, such that

• The Higgs constituents are identified…

• as well as the interactions that hold them together.

As we will see, the resulting model has itself a cutoff and needs to be UV completed:

• This would happen at a scale parametrically above the weak scale…

• … about which we know essentially nothing: it may be that ``technicolor-like"

constructions can be revived and applied at this higher scale

We have provided a simple, renormalizable, UV completion, but we

emphasize that it is wise to remain agnostic about the physics at that scale.
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The Top Sector
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After all is said and done:
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previous states (sharing the appropriate quantum numbers)
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Simplified Limits

The ``composite sector” fills SU(5) multiplets [We will see shortly how this is reduced to SO(5)]

a) Broken (explicitly) by the SM weak gauge interactions

b) The ``elementary sector” does not fill SU(5), nor SO(5), multiplets

c) Only the (gauged) SM symmetry must be preserved

Global symmetry can be (softly) broken by mass terms

However, we must keep in mind that SO(5) ⇢ SU(5) is only an approximate symmetry:
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However, we must keep in mind that SO(5) ⇢ SU(5) is only an approximate symmetry:

Q2 =

✓
�
T 0

◆
Q1 =

✓
T
B

◆

(8>>>>>>>>>>>>><>>>>>>>>>>>>>: 5 1

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
Mixing between composite and elementary sectors

5-1 mixing
�µtSS̄LtR � µ0

tSS̄
0
LtR � µqQ q̄LQ

1
R + h.c.

�µ51S̄LS
0
R � µ0

51S̄
0
LSR + h.c.

Lmass
Fermion

= � µQQ Q̄1

LQ
1

R � µ0
QQ Q̄2

LQ
2

R � µSSS̄LSR � µ
1

S̄0
LS

0
R + h.c.



Simplified Limits

For simplicity, we can decouple some states without changing the underlying mechanism:

1) to decoupleµ0
51 ! 1

�µtSS̄LtR � µ0
tSS̄

0
LtR � µqQ q̄LQ

1
R + h.c.

�µ51S̄LS
0
R � µ0

51S̄
0
LSR + h.c.

Lmass
Fermion

= � µQQ Q̄1

LQ
1

R � µ0
QQ Q̄2

LQ
2

R � µSSS̄LSR � µ
1

S̄0
LS

0
R + h.c.

Light states:

2)

``Extended” Model:

``Minimal” Model: also to decouple (qL, Q
1
R)µqQ ! 1

FL + (Q1
R, Q

2
R) + SR + (qL, tR)

Light states: FL +Q1
R + SR + tR

(S0
L, SR)

Both limits share an approximate , which is the central playerSO(5)L ⇢ SU(5)L

µ51 ! µSS(relabel

)and S0
R ! SR



FL ! 5 of SO(5), QX = 2/3

SR ! 1 of SO(5), QX = 2/3
8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

From SU(5) to SO(5)

Minimal field content:

GS = G0
S 2GS |S̄RF

i
L|2 SU(5)Two SO(5) structures: if is invariant

+
GS

2

�
S̄RFL + F̄LSR

�2 � G0
S

2

�
S̄RFL � F̄LSR

�2

no mass terms allowedLF = iF̄L/@FL + iS̄R/@SR

(Gersdorff, EP, Rosenfeld, 2015)

The SU(5) symmetry can be naturally reduced to SO(5) by 4-fermion operators

SO(5)L ⇥ U(1)X ! SO(4)L ⇥ U(1)X

The symmetry breaking pattern of interest is not crucial here
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2
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2

�
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no mass terms allowedLF = iF̄L/@FL + iS̄R/@SR

Nambu & Jona-Lasinio, 1961
Nambu, 1988

Miranski et. al., 1989

Bardeen, Hill and Lindner, 1989
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+
GS

2

�
S̄RFL + F̄LSR

�2 � G0
S

2

�
S̄RFL � F̄LSR

�2

no mass terms allowedLF = iF̄L/@FL + iS̄R/@SR

hF̄LSR(x)S̄RFL(y)i =

y = 0

y = L

k is the spacetime curvature

UV brane
IR brane

H1

ξL

ξR

χ′

R

QL

+ + + · · ·

0-1

• Goldstone modes, as well as a heavy mode, can be identified from

Nc(becomes exact in the large , i.e. planar limit: study a ``gap equation”)

GS G0
S• We will assume that only (and not ) is super-critical

Nambu & Jona-Lasinio, 1961
Nambu, 1988

Miranski et. al., 1989

Bardeen, Hill and Lindner, 1989
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Nambu-Jona-Lasinio: Review

To understand the NJL mechanism, it is easier and physically more transparent to

use a trick: rewrite the Lagrangian with the help of an auxiliary scalar field

� 1

2GS
�2 � �(S̄RFL + h.c.)

LF = iF̄L/@FL + iS̄R/@SR

� ⇠ F̄LSRFrom the EOM, can think of as the fermion bilinear

+
GS

2

�
S̄RFL + F̄LSR

�2 � G0
S

2

�
S̄RFL � F̄LSR

�2

no mass terms allowedLF = iF̄L/@FL + iS̄R/@SR

Nambu & Jona-Lasinio, 1961
Nambu, 1988

Miranski et. al., 1989

Bardeen, Hill and Lindner, 1989
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� 1

2GS
�2 � �(S̄RFL + h.c.)

LF = iF̄L/@FL + iS̄R/@SR



Nambu-Jona-Lasinio: Review

8 > > > > > > > > > > > > > < > > > > > > > > > > > > > :

+ + + · · ·

ΦΦ

FL

SR

Φ

Φ

Φ

Φ

0-0

+ + + · · ·

ΦΦ

FL

SR

Φ

Φ

Φ

Φ

0-0

Fermion loops induce:

• negative mass squared

• kinetic term for �

• quartic self-interactions

(SL, SR)

⇠ ⌧ 1When the induced kinetic term becomes sizeable (Yukawa coupling ),

we can think of � as a proper, dynamical degree of freedom, corresponding to

a fermion bound state. This requires a gap between the bound state mass and

⇤the cutoff . The Yukawa interaction induces a dynamical mass for

LF = iF̄L/@FL + iS̄R/@SR

+
1

2
(@µ�)

2 � 1

4
�
⇣
�2 � f̂2

⌘2
� ⇠� (S̄RFL + h.c.)



16⇡2�⇠2 = (4Nc +N + 5)⇠4

� = a⇤⇠
2

a⇤ = 12/13

Nc

m2
H = 2a⇤m2

S

Nambu-Jona-Lasinio: Review

LF = iF̄L/@FL + iS̄R/@SR

+
1

2
(@µ�)

2 � 1

4
�
⇣
�2 � f̂2

⌘2
� ⇠� (S̄RFL + h.c.)

(Quasi) IR Fixed points:

0.5 1.0 1.5 2.0

0.6

0.8

1.0

1.2

1.4

1.6

log10 ξ
2

λ
/ξ

2

Figure 1. RG flow of the couplings � and ⇠. The dashed line is the exact IR fixed point a⇤ = 12/13
that is reached in the absence of gauge interactions. QCD corrections introduce a mild dependence
a⇤(⇠) represented by the solid blue line. The thin red lines are examples of trajectories, with the
distance between the dots corresponding to one e-fold of running. For simplicity, we neglect the
running of the strong coupling constant.

where Q1
L

and Q2
L

transform under SU(2)
L

⇥ U(1)
Y

⇢ SO(5)
L

⇥ U(1)
X

as 21
6
and 27

6

respectively, and S
L

(as well as S
R

) as 12
3
.3 Thus, the first doublet Q1

L

has the same

quantum numbers of the left-handed top-bottom doublet, while the second doublet Q2
L

has
the exotic hypercharge 7

6
. The vector-like singlet (S

L

, S
R

) has the same quantum numbers
as the right handed top. In order to obtain a chiral spectrum which at low energies contains
just a left handed 21

6
(to be identified with the SM (t

L

, b
L

) doublet) and a right-handed

12
3
(to be identified as the SM t

R

) we will have to introduce more states in incomplete G
multiplets. We will describe the top sector in detail in Section 2.2, and continue focusing in
this section on the minimal content required to achieve the dynamical breaking above. In
the new basis, the scalar sector becomes

⇣
�̃, �

⌘
⌘ 1p

2

✓
�4 + i�3 �2 + i�1

��2 + i�1 �4 � i�3

◆
, �5 ⌘ �5 (2.10)

where � transforms in 21
2
and �̃ as 2�1

2
of SU(2)

L

⇥ U(1)
Y

. The reality property �⇤ = �

translates into the well-known relation �⇤ = �i�2�̃. In this basis, the Yukawa Lagrangian

3See App. B, where we summarize the conventions for the two di↵erent SO(5) bases, as well as the
embedding of SU(2)L ⇥ U(1)Y ⇢ SO(5)L ⇥ U(1)X .
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16⇡2�� = 2(N + 8)�2 � 8Nc⇠
4 + 8Nc⇠

2�

For SO(N) symmetry and colors:

Nc = 3N = 5For and :

imply hence:



SO(5) ! SO(4)
0

BBBB@

0
0
0
0
1

1

CCCCA

0

BBBB@

H0⇤

�H�

H+

H0

f̂

1

CCCCA� = = hHiU U = e
p
2i hâT â/f

pNGB Top Condensation

The breaking generates 4 NGB’s:

At loop level, the small terms that break the SO(5) can lead to vacuum misalignment:

Need to compute the Coleman-Weinberg potential...

May think of the NGB’s as composite states of the ``top sector” described above.

hH0i = 1p
2
f̂ sin(hh4̂i/f) h�5i = ˆf cos(hh4̂i/f)

To what extent is EWSB an outcome of the dynamics?



LV = � G⇢

2
(JAµ)2 � GX

2
(JX µ)2

The Spin-1 Sector

As already mentioned, a subroup SU(2)L ⇥ U(1)Y � SO(5)⇥ U(1)X is (weakly)

gauged, so as to embed the SM gauge interactions.

It is also possible to describe massive spin-1 resonances, that might arise from the

underlying strong dynamics.

Such composite spin-1 fields can arise from the ``vector channel” 4-fermion interactions:

with Ue5 = U
L

e5U
†
R

, and Q
L

= (Q1
L

, Q2
L

)T , Q
L

= (Q1
L

,Q2
L

)T . One obvious possibility is the
choice

U
L

= U , U
R

= 1 . (2.25)

However, this choice is ambiguous up to a local HHLS ⌘ SO(4) ⇥ U(1)
X

transformation
that acts on U

L

and U
R

from the right.5 This ambiguity defines a so-called Hidden Local
Symmetry (HLS) [48] and Eq. (2.25) corresponds to the unitary gauge. Notice that outside
the unitary gauge, the matrix U

L

and the phase U
R

also contain the NGB’s of the HLS. It
is furthermore convenient to parameterize U

R

and U
L

by U1 and U5 defined as 6

U
R

⌘ (U1)
2
3 , U

L

⌘ U5(U1)
2
3 . (2.26)

The field U1 transforms under U(1)
X

with unit charge and the field U5 is an element of
SO(5) only.

We will refer to the basis defined in Eq. (2.24) as the HLS basis and denote its fields
with calligraphic letters. Note that these fields transform as singlets of the global group G
but transform non-trivially under HHLS.7 The only fields that transform under G are the
NGB’s in U5 and U1. After the above transformation, one obtains

L
F

= i(Q̄
L

, S̄
L

)�µ

⇣
@
µ

+ U †
5@µU5 + q

X

U †
1@µU1

⌘✓
Q

L

S
L

◆
+ iS̄

R

�µ

⇣
@
µ

+ q
X

U †
1@µU1

⌘
S
R

,

(2.27)
where q

X

= 2
3
, and

L
S

= � 1

2G
S

H2 �H S̄S . (2.28)

The Cartan connections appearing in L
F

ensure that the Lagrangian is fully invariant under
the gauge symmetry HHLS. We will see now that they will become dynamical composite
gauge fields, in full analogy to the scalar composites above.

In addition to the scalar four-fermion channels, we add the corresponding vector chan-
nels

L
V

= � G
⇢

2
(JAµ)2 � G

X

2
(JX µ)2 , (2.29)

with the conserved SO(5)
L

and U(1)
X

currents 8

JAµ = (Q̄
L

, S̄
L

)TA�µ

✓
Q

L

S
L

◆
, JX µ = q

X

(Q̄
L

�µQ
L

+ S̄
L

�µS
L

+ S̄
R

�µS
R

) . (2.30)

5In addition, the fields UL,R transform under the full global group G acting from the left.
6Notice that the U(1)X parts of UL and UR must coincide, as they transform identically under the Abelian

part of HHLS, i.e. formally we have [U †
L@µUL]X = U†

R@µUR = 2
3 U

†
1@µU1.

7 The construction of this section could be generalized to the “full SO(5) symmetric” model discussed
at the end of Section 2.2, from which the minimal and extended models can be obtained after decoupling
certain states. For instance, using the notation of Eq. (2.24), one could rotate (QR, S0

R)
T = UL(QR,S 0

R)
T ,

while leaving the “elementary” qL and tR unchanged. For simplicity, we do not keep track of these fields in
this section.

8 The normalization of the generators is trTATB = �AB .
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involving the conserved currents
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2
(JAµ)2 � GX

2
(JX µ)2

The Spin-1 Sector
Such composite spin-1 fields can arise from the ``vector channel” 4-fermion interactions:



LV = � G⇢

2
(JAµ)2 � GX

2
(JX µ)2

The Spin-1 Sector
Such composite spin-1 fields can arise from the ``vector channel” 4-fermion interactions:

The analysis proceeds in complete analogy to the analysis of the ``scalar channels”:

• Rewrite 4-fermion interactions in terms of auxiliary spin-1 fields

• These become dynamical due to quantum effects, thus describing the corresponding

(composite) bound states

Note: the corresponding gauge symmetry can be made explicit using the Hidden Local Symmetry

formalism Bando et. al., 1988



LV = � G⇢

2
(JAµ)2 � GX

2
(JX µ)2

The Spin-1 Sector
Such composite spin-1 fields can arise from the ``vector channel” 4-fermion interactions:

⇠ g⇢mXma andm⇢

• Upshot:

Massive spin-1 resonances with masses

Light spin-1 resonances that get mass only after EWSB

identified with the SM gauge fields

, (coupling )

The analysis proceeds in complete analogy to the analysis of the ``scalar channels”:

• Rewrite 4-fermion interactions in terms of auxiliary spin-1 fields

• These become dynamical due to quantum effects, thus describing the corresponding

(composite) bound states

Note: the corresponding gauge symmetry can be made explicit using the Hidden Local Symmetry

formalism Bando et. al., 1988



g, g0

µtS , µQQ, µ
0
QQ

µ2
e↵ ⌘ 2µ2

tS � µ2
QQ � µ02

QQ

�m2 = � r⇤µ
2
e↵

�m2

Electroweak Symmetry Breaking

Tree-level potential for pNGB’s vanishes, but is generated at 1-loop from

• Spin-1 sector: gauging of SM subgroup proportional to

• Spin-1/2 sector: SO(5) soft breaking terms

Calculability?

• Spin-1 contributions are super-soft, cutoff at m⇢

• Spin-1/2 contributions are only soft: logarithmically divergent

However:

0.5 1.0 1.5 2.0

!1.4

!1.2

!1.0

!0.8

!0.6

!0.4

!0.2

0.0

log10 ξ
2

δm
2
/µ

2 e
ff

Figure 3. RG flow of the ratio �m2/µ2
e↵ and ⇠. The dashed line marks the exact IR fixed point �r⇤

that is reached in the absence of gauge interactions, the solid blue line is the asymptotic trajectory
including QCD e↵ects. The dots on the trajectories represent e-folds of RG running.

and the size of this contribution to the pNGB Higgs mass parameter is controlled by µ2
e↵ .

We should find that the explicit RG scale-dependence in Eq. (3.6) precisely accounts for the
running of µ2

e↵ and the field rescaling of H. Indeed, from Eq. (3.4) and Eq. (E.1) one finds

�
µ

2
e↵

µ2
e↵

� 2�� = � 11

16⇡2
⇠2. (3.7)

M can be chosen at will as long as the running parameters are evaluated at that scale. It
is thus natural to chose M ⇠ mH, in which case the parenthesis in Eq. (3.6) is close to one.
The finite pieces of ↵ and the corresponding contribution to � are given in App. C.

We remark that the modification needed for the minimal model (in which the hyper-
charge 1/6 resonance is decoupled) is simply to replace µe↵ by

µ̃2
e↵ ⌘ 2µ2

tS

� µ02
QQ

, (3.8)

whereas Eq. (3.4) and hence the value of r⇤ remain unchanged, as the decoupled state (q
L

, Q1
R

)
does not possess any Yukawa interactions.
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Counterterm for Higgs mass

displays an IR quasi-fixed point



V = � ↵

2
s2h +

�

4
s4h +O(s6h)

vSM = sh f

Electroweak Symmetry Breaking

Upshot: Coleman-Weinberg potential is effectively super-soft!

0.0 0.1 0.2 0.3 0.4
Ε " sin!v " f#

V
!Ε#

• Gauge interactions:  
   prefer ``vacuum alignment” (no EWSB)

• Yukawa interactions (dominated by top):  
   can induce EWSB

⇠, g⇢ f̂ , f

µQQ, µ
0
QQ, µtS , µqQ

8
><

>:

mS ,mQ,m
0
Q,m⇢,ma,mt

sR =
µtS

mS
, sL =

µqQ

mQ

Parameter space:

masses:

Mixing angles:



Electroweak Symmetry Breaking

T T

Figure 4. Electroweak precision tests for the minimal model with ⌧ 6= 0 (left) and the extended
model with µ

QQ

= µ0
QQ

and ⌧ < 0 (right). We scan over the ranges f 2 [500, 2000] GeV, r
v

2
[0.05, 0.95], g

⇢

2 [0, 3⇡], s
R

2 [0, 1] (and, for the right plot, s
L

2 [0, 1]). We fix ⌧ , m
S

and m
Q

from EWSB (Higgs vev and Higgs mass) plus the top mass, but requiring m
S

,m
Q

> 500 GeV.
In the left panel we also require |⌧ | 2 [0, (1000 GeV)3] while in the right panel we impose ⌧ 2
[�(3000 GeV)3, 0]. All points reproduce the correct Higgs, top and Z masses. The contours
correspond to 68%, 95% and 99% C.L. respectively [53].

the minimal scenario, for ⌧ > 0 all points that lead to successful EWSB have a negative
T and do not satisfy EWPT. There exists however a possibility in the latter scenario to
accommodate both the correct Higgs mass and EWPT with a large negative value for ⌧ . In
fact, if �⌧ is so large as to cancel a large negative µ2

e↵ , we can escape the condition (4.3) and
�1/2 is not bounded by (4.6) . This will however require a very large |⌧ |, and both ↵ and �
show substantial cancellations between tadpole and other contributions. Notice that a large
negative ⌧ is bounded by the mass for the radial mode, Eq. (2.18). We show the S and T
parameters of this model in the right panel of Fig. 4. We find that the interplay of EWSB
and EWPT require in this case a peculiar hierarchy of fermion masses, m

S

< m0
Q

< m
Q

.
The correct Higgs mass and agreement with EWPT can also be achieved in the extended

model with µ
QQ

6= µ0
QQ

(see Fig. 5). As this introduces a new source of explicit SO(4)
violation, we expect the T parameter to be a↵ected. We first consider the case ⌧ = 0. As
we already pointed out above, at µ

QQ

= µ0
QQ

, �1/2 is bounded by Eq. (4.6), resulting in a
too small Higgs mass. One can show that � can be raised if

(µ2
QQ

� µ02
QQ

)(µ2
QQ

+ µ2
qQ

� µ02
QQ

) > 0 , (4.9)

which implies that either µ
QQ

> µ0
QQ

or m
Q

< m0
Q

. It turns out that the former case further
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Look for regions of parameter space with EWSB and correct top and Higgs masses

Then test for general agreement with EW precision measurements (oblique)



Spectrum features

T Q

T Q

Figure 5. Electroweak precision tests (left) and fermion spectrum (right) for the extended model
with µ

QQ

6= µ0
QQ

. The plots in the upper row assume vanishing tadpole, while those in the lower
row have a positive tadpole term. For ⌧ > 0, we also impose m

Q

< m0
Q

. We scan over the ranges
f 2 [500, 2000] GeV, r

v

2 [0.05, 0.95], g
⇢

2 [0, 3⇡], s
R

2 [0, 1] and s
L

2 [0, 1]. In the plots of the
upper row, we fix m

S

, m
Q

and m0
Q

from EWSB (Higgs vev and Higgs mass) plus the top mass,
but requiring m

S

,m
Q

,m0
Q

> 500 GeV. In the lower row plots we instead fix ⌧ , m
S

and m
Q

from
EWSB plus the top mass, requiring m

S

,m
Q

> 500 GeV, while scanning over m0
Q

2 [500, 3000] GeV
and fixing f = 500 GeV. The blue points pass EWPT at 95% C.L.
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Phenomenology: Brief Remarks

• Fermionic resonances, some with exotic charges

Characteristic of SO(5)/SO(4) constructions

• The radial mode H (whose mass is predicted in terms of the singlet fermion mass)

Smoking gun of the present microscopic scenario!

• With Gersdorff, Fichet, and Rosenfeld, currently evaluating the LHC discovery

potential. 

Preliminary results based on pp ! H ! V V ! JJ indicate a reach of 

around 3 TeV at the high-luminosity LHC…

(crucial effect of light generations)

Contino & Servant, 2008
Mrazek & Wulzer, 2009

Dissertori et. al., 2010



Summary

• Higgs compositeness: a fundamental question to be settled experimentally

• While not as urgent, microscopic UV completions can put EFT studies on more 
   solid ground

• Can build a further (renormalizable) UV completion that leads to the required 
   4-fermion interactions, in the desired region of parameter space (see 1502.07340)

• In this talk, we presented a first step that exhibits explicitly both the Higgs 
   constituents and the interactions that hold them together

• It will be interesting to use such an explicit construction to ask phenomenological 
   questions, such as

• When could deviations be expected to first show up

• How would the top content of the Higgs first be manifested

• What would it take to establish such a picture

The answers to such questions may carry more general lessons

Models of Higgs compositeness a necessary ingredient



Thank you!
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L Q̄1,1
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⇠f̂ ch 0 µtS 0
⇠f̂ shp

2
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⇠f̂ shp
2
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1

CCCA

0
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1
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SO(5) ! SO(4) ⇠f̂

µi

sh = sin(h/f)

m2
S ⇡ ⇠2f̂2 + µ2

tS m02
Q ⇡ µ02

QQ

m2
t ⇡ s2v

2

⇠2f̂2 µ2
tSµ

2
qQ

m2
Sm

2
Q

m2
Q = µ2

QQ + µ2
qQ

Fermion Spectrum

The fermion mass spectrum (``extended model") is determined by:

• The spontaneous breaking of :

• (Soft) explicit SO(5) breaking terms:

• EW symmetry breaking (misalignment):

``Heavy” states:

``Light” top quark: (and massless bottom)



✏ ⌘ µ2
e↵

2µ2
tS

Spectrum features

in the lower row plots of Fig. 5 a scan with fixed f = 500 GeV, with the fermion masses in
the range {500, 3000} GeV. In addition we require m

Q

< m0
Q

as otherwise T is negative.
It is also interesting to know how much explicit violation of the global symmetry is

required in the fermionic mass Lagrangian. We therefore plot in the right panel of Fig. 6 the
quantity ✏ defined in Eq. (4.3) against the asymmetry parameter

a
µ

⌘
µ0
QQ

� µ
QQ

µ0
QQ

+ µ
QQ

. (4.11)

The point ✏ = a
µ

= 0 corresponds to the SO(5) preserving choice µ
QQ

= µ0
QQ

= µ
tS

,
while the deviations from a

µ

= 0 parametrize the breaking of the custodial symmetry in the
“composite sector”, to use the language of Section 2.2. We see that a

µ

& 0.15 is required in
order to obtain points that pass EWPT, while ✏ is always very small as expected from the
general arguments above.

We summarize the various scenarios studied in this section in the following table:

Model m
h

EWPT Spectrum Remarks

Minimal
⌧ = 0 too light
⌧ 6= 0 X ⇥

Extended

µ
QQ

= µ0
QQ

⌧ = 0 too light
⌧ > 0 X ⇥ ✏ ⌧ 1
⌧ < 0 X X mH < m

S

< m0
Q

< m
Q

✏ & 1

µ
QQ

6= µ0
QQ

⌧ = 0 X X m
Q

< m0
Q

,m
S

✏ ⌧ 1
⌧ > 0 X X m

Q

< m0
Q

,m
S

✏ ⌧ 1
⌧ < 0 X X

Table 2. Summary of our various scenarios. In the last column we have defined ✏ = µ2
e↵/2µ

2
tS

. See
text for details.

5 Naturalness Considerations

Indirect constraints from electroweak precision data as well as direct bounds on vectorlike
top partners will require a su�ciently high scale for the global symmetry breaking, resulting
in a certain fine-tuning of parameters. In order to get a first idea, it is enough to notice that
the largest cancellation occurs in the quantity ↵. There will be a large positive contribution
proportional to µ2

tS

, leading to a sensitivity

�↵
µtS

↵
⇡ 4r⇤µ2

tS

r
v

m2
h

. (5.1)

For µ
tS

= 500 GeV and r
v

= 0.5 this implies a tuning of about 1%.
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The recently measured Higgs mass of ~125 GeV, as well as precision measurements,

impose significant restrictions on the parameter space.

Sometimes, certain mass hierarchies between heavy vector-like fermions and the

heavy scalar (radial mode) are singled-out.
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Naturalness

Figure 7. Left plot: Fine tuning against the mass m0
Q

(GeV). The gray band is the estimate
Eq. (5.1). Right plot: Fine tuning for µe↵ held fixed.

In the following we will quantify these considerations more precisely by evaluating the
sensitivity parameter

�M ⌘ max
P

�M

P

, �M

P

⌘
����
@ logM

@ logP

���� , (5.2)

where M runs over the measured quantities M 2 {v2,m2
h

,m2
t

} and P over the parameters of
the model. It is important to pick a basis for P that corresponds to the parameters in the
Lagrangian. We thus chose

P 2 {f̂ , f
⇢

, ⇠, g
⇢

, µ
tS

, µ
QQ

, µ
QQ

0 , ⌧} . (5.3)

One can easily evaluate

�v

2

P

=

����
fs

v

v c
v

@
p

log
↵

�
+ @

p

log f 2

���� , �
m

2
h

P

=

����@p log
↵

f 2
� s2

v

c2
v

@
p

log
↵

�

���� , �
m

2
t

P

=

����@p log
↵�

�

���� ,

(5.4)
where p = logP and � = ⇠2f̂ 2µ2

tS

µ2
qQ

/m2
S

m2
Q

. All of the �M in Eq. (5.4) are dominated

by @
p

log↵, and it turns out the largest one is �v

2
. We plot the latter in the left panel of

Fig. 7, using the same parameter scan as in the lower row plots of Fig. 5. We find that
the maximal sensitivity is to the parameter µ

tS

for all points, and pretty much follows the
general considerations in Eq. (5.1), shown as the gray band in the plot. The cancellation of
the term proportional to µ2

tS

then typically requires fine tuning below 1%.
However, as we already discussed in Section 4, to some extent this cancellation must

happen against the other terms in µe↵ , as the other contributions to ↵ are loop suppressed,
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Analytic estimate:



SU(Nc)⇥ SU(Nc)

SU(Nc)

Nc = 3

F i
L(i = 1, . . . 5) SR

⌅i(i = 1, . . . 5)

L � y2

2M2
⌅

(S̄RF
i
L + h.c.)2� ĝ2

8M2
G

(S̄R�
µ�ASR + F̄L,i�

µ�AF i
L)

2

LUV � �1

2
M2

⌅ ⌅2 + y (S̄R ⌅iF i
L + h.c.) +

1

2
M2

GGµG
µ +

1

2
ĝ GA

µ (S̄R�
µ�ASR + F̄L,i�

µ�AF i
L) ,

A Renormalizable UV Model

Consider a gauge theory, spontaneously broken to the diagonal
(as in top-color models)

Field content: SM quarks and any new vector-like states charged under first
hence no anomalies. Diagonal unbroken subgroup identified with QCD

,

• Focus on and of the main part of the talk.

• Add a (neutral) real scalar with mass of the same order as the 

broken gauge bosons (this scalar may itself be a composite state)

In unitary gauge:

Integrating out the heavy fields:



A Renormalizable UV Model

L � y2

2M2
⌅

(S̄RF
i
L + h.c.)2� ĝ2

8M2
G

(S̄R�
µ�ASR + F̄L,i�

µ�AF i
L)

2



A Renormalizable UV Model

L � y2

2M2
⌅

(S̄RF
i
L + h.c.)2� ĝ2

8M2
G

(S̄R�
µ�ASR + F̄L,i�

µ�AF i
L)

2

GS =
ĝ2

2M2
G

+
y2

M2
⌅

, G0
S =

ĝ2

2M2
G

GS > G0
S

After Fierz rearrangement, this leads to the ``scalar channel” 4-fermion int’s, with

One naturally obtains : one super-critical, the other sub-critical.

At the same time, one finds the required ``vector channel” 4-fermion interactions


