Measurements of directed, elliptic, and triangular flow in Cu+Au collisions at VS_{NN} = 200 GeV using the PHENIX detector at RHIC High Energy Physics in the LHC Era 2016 6th International Workshop Vicki Greene for the PHENIX Collaboration Vanderbilt University 7 January 2016 #### Outline - Introduction - Detector configuration - Directed, elliptic, and triangular flow - Charged particles - Identified hadrons - Scaling behavior - Other collision systems - Model comparisons - Conclusions # An example of anisotropic flow: Elliptic Flow Elliptic flow: initial spatial anisotropy pressure gradients momentum anisotropy ## Anisotropic Flow Harmonics – Event Plane Method $$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\phi - \psi_n)\right]\right)$$ $$v_{n} = \left\langle \cos \left[n \left(\phi - \psi_{n} \right) \right] \right\rangle$$ ## Anisotropic flow harmonics - Reflect properties of initial state and evolution of collision system - Probe different length scales - Sensitive to Equation of State and viscosity/entropy ratio η/s - Uncertainties in energy density deposition in initial state are limiting factor in deducing η/s - Asymmetric collisions probe effect of initial geometry ## v_1 sign conventions used - v_1 is defined to be positive at positive η (Cu-going) - x is positive if spectators flow outwards - Measurements use Au spectators, signs are flipped BBC Dipole Magnet SMD Ions Intersection Point Protons A Meters tracks reconstructed with DC and matched to PC3, EMCal PID: TOFE, TOFW ψ_1 - Shower Maximum Detector spectator plane $\psi_{2,3}$ - Beam Beam Counter participant plane ## Collision Systems at BNL-RHIC - Au+Au - p+p - d+Au - Cu+Cu - U+U - Cu+Au - He+Au - p+Au - p+Al ### PHENIX data in this analysis - Run 12 (2012) - 200 GeV - 5 weeks - 7.6 B events - $|\eta| < 0.35$ - arXiv:1509.07784 ### **Event Plane Resolution** three sub-event method used to determine the resolution: $$\operatorname{Res}(\Psi_n^A) = \sqrt{\frac{\langle \cos n \left(\Psi_n^{\rm A} - \Psi_n^{\rm B}\right) \rangle \langle \cos n \left(\Psi_n^{\rm A} - \Psi_n^{\rm C}\right) \rangle}{\langle \cos n \left(\Psi_n^{\rm B} - \Psi_n^{\rm C}\right) \rangle}}$$ Ψ_1 : SMDS, $\Psi_{2,3}$: BBCS+BBSN ## **Centrality Dependence** V₁ Magnitude decreases from central to more peripheral V_2 events Magnitude increases from central to more peripheral events ## v₂ System size dependence:Au+Au, Cu+Au, Cu+Cu Cu+Au v_2 lies between Cu+Cu and Au+Au ## v_2 (ε_2 scaled) ε_2 scaling reorders the results by system size ## v_2 ($\varepsilon_2 N_{part}^{1/3}$ scaled) – length scale universal behavior in all centralities and systems: Cu+Cu, Cu+Au, Au+Au | centrality | Au+Au 200 GeV | Cu+Au 200 GeV | | | |------------|--------------------|-------------------|--|--| | bin | $arepsilon_3$ | $arepsilon_3$ | | | | 0%-10% | 0.087 ± 0.0018 | 0.130 ± 0.004 | | | | 10%-20% | 0.122 ± 0.0035 | 0.161 ± 0.005 | | | | 20%-30% | 0.156 ± 0.0047 | 0.208 ± 0.007 | | | For the same centrality, ϵ_3 is larger in the smaller system due to increased fluctuations ## v_3 system size dependence $$v_{3 \text{ Cu+Au}} > v_{3 \text{ Au+Au}}$$ ## v_3 (ε_3 scaled) Close agreement at low-intermediate p_T Within systematic uncertainties at high p_T ## V_3 scaled by $\varepsilon_3 N_{\rm part}^{1/3}$ Agreement within systematic uncertainties at all p_T ## Identified particle v_2 Mass ordering at low p_T for v_2 for all centralities ## Identified particle v_1 and v_3 Mass ordering at low p_T for $v_{1,3}$ ## v_1 comparison to viscous hydrodynamics Indirect comparison shows qualitative agreement, assuming spectators curl outward from the z-vertex ## v_2 and v_3 comparison to viscous hydrodynamics For 0-5% centrality, η/s =0.8 better reproduces data For 20-30% centrality, both values of η /s agree with data ## Comparison to AMPT #### **Conclusions** - In Cu+Au the magnitude of v_1 decreases from central to peripheral, opposite to v_2 behavior. v_3 is not strongly centrality-dependent - System size comparison: $v_{2,3}$ in different systems scale with $\epsilon_{2,3}$ $N_{part}^{-1/3}$. - Mass ordering is seen for all harmonics. - v_2 and v_3 are consistent with viscous hydrodynamics - AMPT with σ = 3.0 mb describes v_2 and v_3 for p_T < 2 GeV. ## backup Number of participant and the participant eccentricity (ε_2 , ε_3) from Glauber Monte-Carlo calculations for Au+Au, Cu+Cu, and Cu+Au collisions at 200 GeV | centrality | Au+Au 200 GeV | | | Cu+Cu 200 GeV | | Cu+Au 200 GeV | | | |------------|---------------|---------------|-----------------|---------------|---------------|---------------|---------------|---------------| | bin | $N_{ m part}$ | $arepsilon_2$ | ε_3 | $N_{ m part}$ | $arepsilon_2$ | $N_{ m part}$ | $arepsilon_2$ | $arepsilon_3$ | | 0%-10% | 325.2 | 0.103 | 0.087 | 98.2 | 0.163 | 177.2 | 0.138 | 0.130 | | | ± 3.3 | ± 0.003 | $\pm~0.0018$ | ± 2.4 | ± 0.003 | ± 5.2 | ± 0.011 | ± 0.004 | | 10% – 20% | 234.6 | 0.200 | 0.122 | 73.6 | 0.241 | 132.4 | 0.204 | 0.161 | | | ± 4.7 | ± 0.005 | $\pm \ 0.0035$ | ± 2.5 | ± 0.007 | ± 3.7 | ± 0.008 | ± 0.005 | | 20% - 30% | 166.6 | 0.284 | 0.156 | 53.0 | 0.317 | 95.1 | 0.280 | 0.208 | | | ± 5.4 | ± 0.006 | $\pm~0.0047$ | ± 1.9 | ± 0.006 | ± 3.2 | ± 0.008 | ± 0.007 | | 30% - 40% | 114.2 | 0.356 | 0.198 | 37.3 | 0.401 | 65.7 | 0.357 | 0.266 | | | ± 4.4 | ± 0.006 | $\pm \ 0.0083$ | ± 1.6 | ± 0.008 | ± 3.4 | ± 0.010 | ± 0.010 | | 40% - 50% | 74.4 | 0.422 | 0.253 | 25.4 | 0.484 | 43.3 | 0.436 | 0.332 | | | ± 3.8 | ± 0.006 | $\pm~0.0111$ | ± 1.3 | ± 0.008 | ± 3.0 | ± 0.013 | ± 0.013 | | 50%-60% | 45.5 | 0.491 | 0.325 | 16.7 | 0.579 | 26.8 | 0.523 | 0.412 | | | ± 3.3 | ± 0.005 | $\pm\ 0.0179$ | ± 0.9 | ± 0.008 | ± 2.6 | ± 0.019 | ± 0.019 | ## backup Systematic uncertainties given in percent on the v_n measurements. | v_n | Uncertainty Sources | 10%-20% | 40%-50% | Type | |-------|------------------------|---------|---------|--------------| | v_1 | Event plane resolution | 20% | 12% | C | | | Event plane detectors | 3% | 4% | В | | | Background | 2% | 2% | \mathbf{A} | | | Acceptance | 10% | 10% | \mathbf{C} | | v_2 | Event plane resolution | 2% | 2% | C | | | Event plane detectors | 3% | 4% | В | | | Background | 2% | 2% | A | | | Acceptance | 8% | 3% | \mathbf{C} | | v_3 | Event plane resolution | 2% | 2% | C | | | Event plane detectors | 3% | 7% | В | | | Background | 2% | 2% | A | | | Acceptance | 2% | 10% | C | ## backup #### Systematic uncertainties for particle identification | species | $p_T \le 2 \text{GeV}/c$ | $p_T \ge 2 \text{GeV}/c$ | Type | |---------|--------------------------|--------------------------|------| | pion | 3% | 5% | A | | kaon | 3% | 10% | A | | proton | 3% | 5% | A | ## Contributions to systematic uncertainties - Event plane resolution correction - Event plane using different detectors - V_n from background tracks - Acceptance dependencies - PID purity ## PHENIX Run 12 Detector Configuration