Measurements of directed, elliptic, and triangular flow in Cu+Au collisions at  $VS_{NN}$  = 200 GeV using the PHENIX detector at RHIC

High Energy Physics in the LHC Era 2016 6<sup>th</sup> International Workshop

Vicki Greene for the PHENIX Collaboration
Vanderbilt University
7 January 2016





#### Outline

- Introduction
- Detector configuration
- Directed, elliptic, and triangular flow
  - Charged particles
  - Identified hadrons
  - Scaling behavior
  - Other collision systems
- Model comparisons
- Conclusions





# An example of anisotropic flow: Elliptic Flow

Elliptic flow: initial spatial anisotropy 

pressure gradients 

momentum anisotropy







## Anisotropic Flow Harmonics – Event Plane Method



$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\phi - \psi_n)\right]\right)$$

$$v_{n} = \left\langle \cos \left[ n \left( \phi - \psi_{n} \right) \right] \right\rangle$$







## Anisotropic flow harmonics

- Reflect properties of initial state and evolution of collision system
- Probe different length scales
- Sensitive to Equation of State and viscosity/entropy ratio  $\eta/s$ 
  - Uncertainties in energy density deposition in initial state are limiting factor in deducing  $\eta/s$
- Asymmetric collisions probe effect of initial geometry





## $v_1$ sign conventions used





- $v_1$  is defined to be positive at positive  $\eta$  (Cu-going)
- x is positive if spectators flow outwards
- Measurements use Au spectators, signs are flipped







BBC Dipole Magnet SMD

Ions

Intersection Point

Protons

A

Meters

tracks reconstructed with DC and matched to PC3, EMCal

PID: TOFE, TOFW

 $\psi_1$  - Shower Maximum Detector spectator plane

 $\psi_{2,3}$  - Beam Beam Counter participant plane





## Collision Systems at BNL-RHIC

- Au+Au
- p+p
- d+Au
- Cu+Cu
- U+U
- Cu+Au
- He+Au
- p+Au
- p+Al



### PHENIX data in this analysis

- Run 12 (2012)
- 200 GeV
- 5 weeks
- 7.6 B events
- $|\eta| < 0.35$
- arXiv:1509.07784





### **Event Plane Resolution**



three sub-event method used to determine the resolution:

$$\operatorname{Res}(\Psi_n^A) = \sqrt{\frac{\langle \cos n \left(\Psi_n^{\rm A} - \Psi_n^{\rm B}\right) \rangle \langle \cos n \left(\Psi_n^{\rm A} - \Psi_n^{\rm C}\right) \rangle}{\langle \cos n \left(\Psi_n^{\rm B} - \Psi_n^{\rm C}\right) \rangle}}$$

 $\Psi_1$ : SMDS,  $\Psi_{2,3}$ : BBCS+BBSN



## **Centrality Dependence**



V<sub>1</sub>
Magnitude
decreases from
central to more
peripheral

 $V_2$ 

events

Magnitude increases from central to more peripheral events





## v<sub>2</sub> System size dependence:Au+Au, Cu+Au, Cu+Cu



Cu+Au  $v_2$  lies between Cu+Cu and Au+Au





## $v_2$ ( $\varepsilon_2$ scaled)



 $\varepsilon_2$  scaling reorders the results by system size





## $v_2$ ( $\varepsilon_2 N_{part}^{1/3}$ scaled) – length scale



universal behavior in all centralities and systems:

Cu+Cu, Cu+Au, Au+Au



| centrality | Au+Au 200 GeV      | Cu+Au 200 GeV     |  |  |
|------------|--------------------|-------------------|--|--|
| bin        | $arepsilon_3$      | $arepsilon_3$     |  |  |
| 0%-10%     | $0.087 \pm 0.0018$ | $0.130 \pm 0.004$ |  |  |
| 10%-20%    | $0.122 \pm 0.0035$ | $0.161 \pm 0.005$ |  |  |
| 20%-30%    | $0.156 \pm 0.0047$ | $0.208 \pm 0.007$ |  |  |

For the same centrality,  $\epsilon_3$  is larger in the smaller system due to increased fluctuations





## $v_3$ system size dependence



$$v_{3 \text{ Cu+Au}} > v_{3 \text{ Au+Au}}$$





## $v_3$ ( $\varepsilon_3$ scaled)



Close agreement at low-intermediate  $p_T$ Within systematic uncertainties at high  $p_T$ 





## $V_3$ scaled by $\varepsilon_3 N_{\rm part}^{1/3}$



Agreement within systematic uncertainties at all p<sub>T</sub>





## Identified particle $v_2$





Mass ordering at low  $p_T$  for  $v_2$  for all centralities

## Identified particle $v_1$ and $v_3$



Mass ordering at low  $p_T$  for  $v_{1,3}$ 





## $v_1$ comparison to viscous hydrodynamics





Indirect comparison shows qualitative agreement, assuming spectators curl outward from the z-vertex





## $v_2$ and $v_3$ comparison to viscous hydrodynamics



For 0-5% centrality,  $\eta/s$  =0.8 better reproduces data

For 20-30% centrality, both values of  $\eta$ /s agree with data





## Comparison to AMPT





#### **Conclusions**

- In Cu+Au the magnitude of  $v_1$  decreases from central to peripheral, opposite to  $v_2$  behavior.  $v_3$  is not strongly centrality-dependent
- System size comparison:  $v_{2,3}$  in different systems scale with  $\epsilon_{2,3}$   $N_{part}^{-1/3}$ .
- Mass ordering is seen for all harmonics.
- $v_2$  and  $v_3$  are consistent with viscous hydrodynamics
- AMPT with  $\sigma$  = 3.0 mb describes  $v_2$  and  $v_3$  for  $p_T$  < 2 GeV.





## backup

Number of participant and the participant eccentricity ( $\varepsilon_2$ ,  $\varepsilon_3$ ) from Glauber Monte-Carlo calculations for Au+Au, Cu+Cu, and Cu+Au collisions at 200 GeV

| centrality | Au+Au 200 GeV |               |                 | Cu+Cu 200 GeV |               | Cu+Au 200 GeV |               |               |
|------------|---------------|---------------|-----------------|---------------|---------------|---------------|---------------|---------------|
| bin        | $N_{ m part}$ | $arepsilon_2$ | $\varepsilon_3$ | $N_{ m part}$ | $arepsilon_2$ | $N_{ m part}$ | $arepsilon_2$ | $arepsilon_3$ |
| 0%-10%     | 325.2         | 0.103         | 0.087           | 98.2          | 0.163         | 177.2         | 0.138         | 0.130         |
|            | $\pm 3.3$     | $\pm 0.003$   | $\pm~0.0018$    | $\pm 2.4$     | $\pm 0.003$   | $\pm 5.2$     | $\pm 0.011$   | $\pm 0.004$   |
| 10% – 20%  | 234.6         | 0.200         | 0.122           | 73.6          | 0.241         | 132.4         | 0.204         | 0.161         |
|            | $\pm 4.7$     | $\pm 0.005$   | $\pm \ 0.0035$  | $\pm 2.5$     | $\pm 0.007$   | $\pm 3.7$     | $\pm 0.008$   | $\pm 0.005$   |
| 20% - 30%  | 166.6         | 0.284         | 0.156           | 53.0          | 0.317         | 95.1          | 0.280         | 0.208         |
|            | $\pm 5.4$     | $\pm 0.006$   | $\pm~0.0047$    | $\pm 1.9$     | $\pm 0.006$   | $\pm 3.2$     | $\pm 0.008$   | $\pm 0.007$   |
| 30% - 40%  | 114.2         | 0.356         | 0.198           | 37.3          | 0.401         | 65.7          | 0.357         | 0.266         |
|            | $\pm 4.4$     | $\pm 0.006$   | $\pm \ 0.0083$  | $\pm 1.6$     | $\pm 0.008$   | $\pm 3.4$     | $\pm 0.010$   | $\pm 0.010$   |
| 40% - 50%  | 74.4          | 0.422         | 0.253           | 25.4          | 0.484         | 43.3          | 0.436         | 0.332         |
|            | $\pm 3.8$     | $\pm 0.006$   | $\pm~0.0111$    | $\pm 1.3$     | $\pm 0.008$   | $\pm 3.0$     | $\pm 0.013$   | $\pm 0.013$   |
| 50%-60%    | 45.5          | 0.491         | 0.325           | 16.7          | 0.579         | 26.8          | 0.523         | 0.412         |
|            | $\pm 3.3$     | $\pm 0.005$   | $\pm\ 0.0179$   | $\pm 0.9$     | $\pm 0.008$   | $\pm 2.6$     | $\pm 0.019$   | $\pm 0.019$   |





## backup

Systematic uncertainties given in percent on the  $v_n$  measurements.

| $v_n$ | Uncertainty Sources    | 10%-20% | 40%-50% | Type         |
|-------|------------------------|---------|---------|--------------|
| $v_1$ | Event plane resolution | 20%     | 12%     | C            |
|       | Event plane detectors  | 3%      | 4%      | В            |
|       | Background             | 2%      | 2%      | $\mathbf{A}$ |
|       | Acceptance             | 10%     | 10%     | $\mathbf{C}$ |
| $v_2$ | Event plane resolution | 2%      | 2%      | C            |
|       | Event plane detectors  | 3%      | 4%      | В            |
|       | Background             | 2%      | 2%      | A            |
|       | Acceptance             | 8%      | 3%      | $\mathbf{C}$ |
| $v_3$ | Event plane resolution | 2%      | 2%      | C            |
|       | Event plane detectors  | 3%      | 7%      | В            |
|       | Background             | 2%      | 2%      | A            |
|       | Acceptance             | 2%      | 10%     | C            |





## backup

#### Systematic uncertainties for particle identification

| species | $p_T \le 2 \text{GeV}/c$ | $p_T \ge 2 \text{GeV}/c$ | Type |
|---------|--------------------------|--------------------------|------|
| pion    | 3%                       | 5%                       | A    |
| kaon    | 3%                       | 10%                      | A    |
| proton  | 3%                       | 5%                       | A    |





## Contributions to systematic uncertainties

- Event plane resolution correction
- Event plane using different detectors
- $V_n$  from background tracks
- Acceptance dependencies
- PID purity





## PHENIX Run 12 Detector Configuration



