Run-2 Supersymmetry searches in ATLAS

Abner Soffer Tel Aviv University On behalf of the ATLAS Collaboration

6th International Workshop on High Energy Physics in the LHC Era Valparaiso, Chile, 6-12 January, 2016

Outline

- Overview of Run-1 and Run-2 SUSY searches
- Common analysis procedures
 - Selection of physics objects (jets, b-jets, leptons)
 - Event-selection variables
 - Background estimation & validation methods
- Results and interpretations for 7 analyses:
 - 1. 2-6 jets ATLAS-CONF-2015-062 2. 7-10 jets ATLAS-CONF-2015-077 3. 1 lepton ATLAS-CONF-2015-076 2 same-sign or 3 leptons 4. ATLAS-CONF-2015-078 5. 3 or more b-jets ATLAS-CONF-2015-067 Sbottom pair 6. ATLAS-CONF-2015-066 7. $Z \rightarrow \ell \ell$ ATLAS-CONF-2015-082

Run-1 (7-8 TeV) SUSY results

ATLAS SUSY Searches* - 95% CL Lower Limits

Status: July 2015

	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} \text{MSUGRA/CMSSM} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} \\ (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{k}_{1}^{0} \\ (\text{compressed}) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{q} \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{k}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{k}_{1}^{1} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{k}_{1}^{1} \\ \tilde{g}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \tilde{k}_{1}^{1} \\ \tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \tilde{k}_{1}^{1} \\ \tilde{s}\tilde{s}\tilde{s}\tilde{s}, \tilde{s} \rightarrow q \tilde{k}_{1}^{1} \\ \tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s} \tilde{s}\tilde{s} \\ \tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}\tilde{s}$	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 }\tau & 3\\ 0\\ \text{mono-jet} \\ 2 \ e, \mu \ (\text{off-}Z) \\ 0\\ 0\text{-1 } e, \mu \\ 2 \ e, \mu \\ 1\text{-2 }\tau + 0\text{-1 }\ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets 2 jets	 b Yes Yes 	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	q. ğ. 850 GeV q. 850 GeV q. 100-440 GeV q. 780 GeV ğ. 780 GeV ğ. 850 GeV G. 850 GeV	1.33 TeV 1.26 TeV 1.32 TeV 1.3 TeV 1.29 TeV 1.3 TeV 1.25 TeV	1.8 TeV $m(\tilde{q})=m(\tilde{g})$ $m(\tilde{q}^{2})=0$ GeV, $m(1^{st} \text{ gen. } \tilde{q})=m(2^{sd} \text{ gen. } \tilde{q})$ $m(\tilde{q})=m(\tilde{\xi}_{1}^{0})<10$ GeV $m(\tilde{\xi}_{1}^{0})=0$ GeV $m(\tilde{\xi}_{1}^{0})=0$ GeV $m(\tilde{\xi}_{1}^{0})=0$ GeV $tan\beta > 20$ cr(NLSP)<0.1 mm $m(\tilde{\chi}_{1}^{0})<900$ GeV, $cr(NLSP)<0.1 mm, \mu<0$ $m(\tilde{\chi}_{1}^{0})<900$ GeV, $cr(NLSP)<0.1 mm, \mu>0$ $m(\tilde{\chi}_{1}^{0})<850$ GeV $m(\tilde{G})>1.8 \times 10^{-4}$ eV, $m(\tilde{g})=m(\tilde{g})=1.5$ TeV	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. Ĩ med.	$ \begin{array}{c} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \tilde{\iota} \tilde{\chi}_{1}^{+} \end{array} $	0 0 0-1 <i>e</i> , µ 0-1 <i>e</i> , µ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ž Š Ž Ž	1.25 TeV 1.1 TeV 1.34 TeV 1.3 TeV	m(x ²)<400 GeV m(x ²) <350 GeV m(x ²) <400 GeV m(x ²) <300 GeV	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{array}{l} \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow b \bar{k}_{1}^{0} \\ \bar{b}_{1}\bar{b}_{1}, \bar{b}_{1} \rightarrow \bar{k} \bar{\ell}_{1}^{\pm} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow b \bar{k}_{1}^{\pm} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow b \bar{k}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow b \bar{k}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow c \bar{\ell}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1}, \bar{i}_{1} \rightarrow c \bar{\ell}_{1}^{0} \\ \bar{i}_{1}\bar{i}_{1} (natural ad GMSB) \\ \bar{i}_{2}\bar{i}_{2}, \bar{i}_{2} \rightarrow \bar{i}_{1} + Z \end{array} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 1-2 \ e, \mu \\ 0-2 \ e, \mu \ (C) \\ 0 \\ 3 \ e, \mu \ (Z) \end{matrix}$	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-t 1 b 1 b	Yes Yes Yes 2 b Yes tag Yes Yes Yes	20.1 20.3 4.7/20.3 20.3 20.3 20.3 20.3	b1 100-620 GeV b1 275-440 GeV 71 110-167 GeV 230-460 GeV 74 90-191 GeV 210-700 GeV 74 90-240 GeV 210-700 GeV 75 150-580 GeV 290-600 GeV		$\begin{split} &m(\tilde{k}_{1}^{0}){<}90~\text{GeV} \\ &m(\tilde{k}_{1}^{+}){=}2~m(\tilde{k}_{1}^{0}) \\ &m(\tilde{k}_{1}^{-}){=}2m(\tilde{k}_{1}^{0}),~m(\tilde{k}_{1}^{0}){=}55~\text{GeV} \\ &m(\tilde{k}_{1}^{0}){=}1~\text{GeV} \\ &m(\tilde{r}_{1}){-}m(\tilde{k}_{1}^{0}){<}85~\text{GeV} \\ &m(\tilde{k}_{1}^{0}){>}150~\text{GeV} \\ &m(\tilde{k}_{1}^{0}){<}200~\text{GeV} \end{split}$	1308.2631 1404.2500 1209.2102,1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{split} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{\nu}(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{1}^{*}, \tilde{\chi}_{1}^{*} \rightarrow \tilde{\ell}_{\nu}(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{*} \rightarrow \ell \nu \ell \ell (\tilde{\nu} \tilde{\nu}), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{*}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{*} \\ \tilde{\chi}_{2}^{0} \rightarrow \tilde{\chi}_{2}^{*} \rightarrow \tilde{\chi}_{2}^{0} \\ GGM (wino NLSP) weak prod \\ \end{split} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ 2 - 3 \ e, \mu \\ \gamma \gamma \ e, \mu, \gamma \\ 4 \ e, \mu \\ . \ 1 \ e, \mu + \gamma \end{array}$	0 0 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3			$\begin{split} & m(\tilde{\xi}_1^0){=}0GeV \\ & m(\tilde{\xi}_1^0){=}0GeV,m(\tilde{\xi},\tilde{\nu}){=}0.5(m(\tilde{\xi}_1^0){+}m(\tilde{\xi}_1^0)) \\ & m(\tilde{\xi}_1^0){=}0GeV,m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\xi}_1^0){+}m(\tilde{\xi}_1^0)) \\ & m(\tilde{\xi}_1^0){=}m(\tilde{\xi}_2^0),m(\tilde{\xi}_1^0){=}0,sleptonsdecoupled \\ & m(\tilde{\xi}_1^0){=}m(\tilde{\xi}_2^0),m(\tilde{\xi}_1^0){=}0,sleptonsdecoupled \\ & m(\tilde{\xi}_1^0){=}0,m(\tilde{\xi}_1^0){=}0,m(\tilde{\xi}_1^0){=}0,sleptonsdecoupled \\ & m(\tilde{\xi}_1^0){=}0,m(\tilde{\xi}_1^0){=}0,m(\tilde{\xi}_1^0){=}0,fm(\tilde{\xi}_2^0){+}m(\tilde{\xi}_1^0)) \\ & cr<1nm(\tilde{\xi}_1^0){=}0,m$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	Direct $\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\lambda}$ Direct $\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{-}$ prod., long-lived $\tilde{\lambda}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^{0} \rightarrow \tilde{\tau}(\tilde{c}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^{0} \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^{0}$ GMSB, $\tilde{\chi}_1^{0} \rightarrow eev(e\mu\nu/\mu\nu$ GGM $\tilde{g}\tilde{g}, \tilde{\chi}_1^{0} \rightarrow Z\tilde{G}$		1 jet - 1-5 jets - - - τ - ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	$ar{\chi}^{\pm}_1$ 270 GeV $ar{\chi}^{\pm}_1$ 482 GeV $ar{g}$ 832 GeV $ar{g}$ 537 GeV $ar{\chi}^{0}$ 537 GeV $ar{\chi}^{0}$ 1.1 $ar{\chi}^{0}_1$ 1.1	1.27 TeV 0 TeV 0 TeV	$\begin{split} &m(\tilde{k}_1^+)-m(\tilde{k}_1^0) \sim 160 \; \text{MeV}, \; \tau(\tilde{k}_1^+)=0.2 \; \text{ns} \\ &m(\tilde{k}_1^+)-m(\tilde{k}_1^0) \sim 160 \; \text{MeV}, \; \tau(\tilde{k}_1^+)<15 \; \text{ns} \\ &m(\tilde{k}_1^0)=100 \; \text{GeV}, \; 10 \; \mu s < \tau(\tilde{g}) < 1000 \; \text{s} \\ &10 < \tan \beta < 50 \\ &2 < \tau(\tilde{k}_1^0) < 3 \; \text{ns}, \; \text{SPS8 model} \\ &7 < \tau(\tilde{k}_1^0) < 740 \; \text{mm}, \; m(\tilde{g})=1.3 \; \text{TeV} \\ &6 < c \tau(\tilde{k}_1^0) < 480 \; \text{mm}, \; m(\tilde{g})=1.1 \; \text{TeV} \end{split}$	1310.3675 1506.05332 1310.6584 1411.6795 1419.5795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV \ p p \rightarrow \tilde{\mathbf{v}}_{\tau} + X, \tilde{\mathbf{v}}_{\tau} \rightarrow e \mu / e \tau / \mu \mathbf{r} \\ Bilinear \ RPV \ CMSSM \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\mathbf{n}} \\ \tilde{X}_1^+ \tilde{X}_1^-, \tilde{X}_1^+ \rightarrow W \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow \tau \tau \tilde{\mathbf{v}}_e, e \tau \tilde{\mathbf{v}} \\ \tilde{X}_3^+ \tilde{S}_2^- q q \\ \tilde{g}_3^- \tilde{S}_3^- \tilde{g}_2^- q \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow \tau \sigma s \\ \tilde{g}_3^- \tilde{S}_3^- \tilde{g}_2^- q \tilde{X}_1^0, \tilde{X}_1^0 \rightarrow b s \\ \tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow b s \\ \tilde{i}_1 \tilde{i}_1, \tilde{i}_1 \rightarrow b \ell \end{array} $	$\begin{array}{c} - & e\mu, e\tau, \mu\tau \\ 2 & e, \mu \; (\text{SS}) \\ \phi_e & 4 & e, \mu \\ \phi_\tau & 3 & e, \mu + \tau \\ 0 & 0 \\ 2 & e, \mu \; (\text{SS}) \\ 0 \\ 2 & e, \mu \end{array}$	- 0-3 b - - 6-7 jets 0-3 b 2 jets + 2 2 b	- Yes Yes - Yes b -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{r}\$, \$\vec{r}\$ \$\vec{r}\$, \$\vec{r}\$ \$\vec{r}\$, \$\vec{r}\$ \$\vec{r}\$, \$\vec{r}\$ \$\vec{r}\$	1 1.35 TeV eV V) TeV	$\begin{array}{c} \textbf{.7 TeV} & A_{311}^{\prime}=0.11, \ A_{132/133/233}=0.07 \\ \textbf{m}(\vec{q})=\textbf{m}(\vec{g}), \ c_{TLSP}<1 \ \textbf{nm} \\ \textbf{m}(\vec{k}_{1}^{\prime})=0.2 \ \textbf{xm}(\vec{k}_{1}^{\prime}), \ A_{131}\neq 0 \\ \textbf{m}(\vec{k}_{1}^{\prime})=0.2 \ \textbf{xm}(\vec{k}_{1}^{\prime}), \ A_{133}\neq 0 \\ \textbf{BR}(t)=\textbf{BR}(t)=\textbf{BR}(c)=0\% \\ \textbf{m}(\vec{k}_{1}^{\prime})=600 \ \textbf{GeV} \end{array}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 490 GeV		$m(ilde{\chi}_1^0)$ <200 GeV	1501.01325

ATLAS Preliminary $\sqrt{s} = 7.8$ TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

1

Mass scale [TeV]

 10^{-1}

Run 2 (13 TeV) SUSY analyses...

- ATLAS collected 3.87 fb⁻¹, after quality cuts: 3.2 ± 0.2 fb⁻¹
- Much smaller than our 8 TeV Run-1 sample: ~20 fb⁻¹
- But cross sections for strongly produced heavy particles increase significantly in going from 8 TeV to 13 TeV:
 ~× 15 for σ(q̃q̃) with m_{q̃} = 1 TeV

~× 35 for $\sigma(\tilde{g}\tilde{g})$ with $m_{\tilde{g}} = 1.5$ TeV

- \rightarrow Run-2 SUSY searches focus on gluino and squark production
- 7 analyses using a variety of signatures with 44 signal regions:
 - Missing transverse energy (MET, E_T^{miss})
 - Jets
 - Leptons: 0, 1, 2 (Z), 2 same sign or 3
 - b-jets: 0, 1, 2, or 3+

... cover a range of SUSY scenarios

Physics object selection

• Jets:

- Reconstructed from calorimeter energy clusters using the anti- k_T algorithm with radius parameter R = 0.4
- Jets are reclustered with R = 1 to search for boosted top quarks
- Corrected for avg. energy deposition from pile-up (= multiple pp collisions, averaging 14 in 2015)
- Jet energy scale calibrated with detector response from MC and 8 TeV data
- Event rejected if contains jet identified as due to noise or non-collision
- b-jets:
 - Tagged by multivariate algorithm using the impact parameters of tracks in the jet, and the presence and flight paths of displaced vertices from b/c hadrons
- Electrons:
 - Matching EM calorimeter clusters to inner-detector tracks & TRT threshold
- Muons:
 - Matching tracks in the muon spectrometer and inner detector

Event selection inputs

- Physics-object overlap removal:
 - If 2 objects (e, μ , jet, or b-jet) are nearby, indicating mis-identification, one of them is discarded according to an optimized algorithm
- Missing transverse energy:

$$- \qquad \vec{p}_T^{miss} = -\left[\sum_{\substack{\text{physics} \\ \text{objects}}} \vec{p}_T + \sum_{\substack{\text{other} \\ \text{PV tracks}}} \vec{p}_T\right]$$

- MET
$$\equiv E_T^{miss} = \left| \vec{p}_T^{miss} \right|$$

• Scalar p_T sum

• Effective mass:

$$- H_T = \sum_{\substack{\text{physics}\\\text{objects}}} p_T \qquad - m_{\text{eff}} = \sum_{\substack{\text{physics}\\\text{objects}}} p_T + E_T^{miss}$$

Common analysis procedures

- Define signal regions (SRs)
 - Based on N_{leptons} , N_{jets} , $N_{b-\text{jets}}$ with p_T cuts, H_T , MET, m_{eff} , etc.
 - Targeting different regions in SUSY parameter space
- Estimate background for each SR in control regions (CRs)
 - Usually using Monte Carlo distributions to relate CR yields to SR yields
 - Background estimate from CRs validated using validation regions (VRs)
 - Smaller backgrounds often obtained from MC
- If no excess, set limits using the CLs prescription, accounting for systematic uncertainties:
 - Finite MC statistics
 - Theory, e.g., models used for background shapes
 - Jet energy scale and resolution
 - Lepton / b-jet ID efficiencies and purities

1/7. Search using2-6 jetsno leptons

- 7 SRs with 2-6 jets & different cuts
 - Targeting different models
- Veto leptons with $p_T > 10 \text{ GeV}$
- 4 CRs for each SR, to obtain background from
 - Multi-jet
 - $Z(\rightarrow \nu \bar{\nu}) + \text{jets}$
 - $W(\rightarrow \ell \bar{\nu}) + \text{jets}$
 - $t\bar{t}$, single-t
- Background from MC
 - Di-boson

Requirement		Signal Region						
Requirement	2jl	2jm	2jt	4jt	5j	6jm	6jt	
$E_{\rm T}^{\rm miss}$ [GeV] >		200						
$p_{\rm T}(j_1) [{\rm GeV}] >$	200	300		200				
$p_{\rm T}(j_2) [{\rm GeV}] >$	200	50	200	200 100				
$p_{\rm T}(j_3) [{\rm GeV}] >$		_		100				
$p_{\rm T}(j_4) [{\rm GeV}] >$		_		100				
$p_{\rm T}(j_5) [{\rm GeV}] >$	_			100				
$p_{\rm T}(j_6) [{\rm GeV}] >$	_				100			
$\Delta \phi(\text{jet}_{1,2,(3)}, \boldsymbol{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	0.8 0.4 0.8 0.4			.4				
$\Delta \phi(\text{jet}_{i>3}, \boldsymbol{E}_{\text{T}}^{\text{miss}})_{\text{min}} >$	_			0.2				
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$	1	5	20	_				
Aplanarity >		_		0.04				
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j})>$		_		0.2	0.	25	0.2	
$m_{\rm eff}({\rm incl.}) [{\rm GeV}] >$	1200	1600	2200	2200	1600	1600	2000	
Leptons:		none	with p	$_{T} > 10$ (GeV			

$m_{\rm eff}$ in signal regions

Expected and observed event count in each SR:

2/7. Search using 7-10 jets no leptons

- 6 SRs with 7-8 $p_T > 80$ GeV jets, incl. 0-2 *b*-jets
- 9 SRs with 8-10 $p_T > 50$ GeV jets , incl. 0-2 *b*-jets
- No leptons with pT > 10 GeV
- $t\bar{t}$, V+jets background obtained from CRs containing a lepton with $p_T > 20$ GeV

- Multijet background from CRs with 1 jet less.
- Utilize near invariance of $E_T^{miss}/\sqrt{H_T}$ wrt. N_{jets} when MET originates from calorimeter mismeasurement
 - Checked in VRs

(a) $n_{50} = 7$, using a template with $n_{50} = 6$.

$E_T^{miss}/\sqrt{H_T}$ in some SRs

- SR: $\frac{E_T^{miss}}{\sqrt{H_T}} > 4 \sqrt{\text{GeV}}$
- Distribution normalization: $\frac{E_T^{miss}}{\sqrt{H_T}} < 1.5 \sqrt{\text{GeV}}$

Signal region	Fit	Ohe avant		
Signal region	Multijet	Leptonic	Total	- Obs events
8j50	109.3 ± 6.8	79 ± 25	189 ± 26	157
8j50-1b	76.7 ± 2.6	61 ± 21	138 ± 21	97
8j50-2b	33.8 ± 2.1	33 ± 13	67 ± 13	39
9j50	16.8 ± 1.2	12.8 ± 5.4	29.6 ± 5.6	29
9j50-1b	13.5 ± 1.9	10.2 ± 4.9	23.8 ± 5.3	21
9j50-2b	6.4 ± 1.6	5.8 ± 3.3	12.1 ± 3.6	9
10j50	2.61 ± 0.60	1.99 ± 0.62	4.60 ± 0.86	6
10j50-1b	2.42 ± 0.62	1.44 ± 0.49	3.86 ± 0.79	3
10j50-2b	1.40 ± 0.87	0.83 ± 0.37	2.23 ± 0.94	1
7j80	40.0 ± 5.1	30 ± 12	70 ± 13	70
7j80-1b	29.1 ± 3.2	20.8 ± 10	50 ± 10	42
7j80-2b	11.5 ± 1.6	11.0 ± 4.9	22.5 ± 5.2	19
8j80	4.5 ± 1.9	4.9 ± 2.1	9.3 ± 2.8	8
8j80-1b	3.9 ± 1.5	3.8 ± 2.1	7.6 ± 2.6	4
8j80-2b	1.72 ± 0.92	2.3 ± 1.1	4.1 ± 1.4	2

Expected and observed event count in each SR:

A. Soffer, ATLAS SUSY Run-2, Valparaiso

(b) Simplified cascade decay model

3/7. Search using 1-lepton

- 4 hard- ℓ SRs:
 - $p_T > 35$ GeV lepton
 - No additional leptons with $p_T > 10 \text{ GeV}$
 - 4-6 jets
- 2 soft- ℓ SRs:
 - $p_T > 7(6)$ GeV for $e(\mu)$ and $p_T < 35$ GeV
 - No additional $e(\mu)$ with $p_T > 7(6)$ GeV
 - 2 or 5 jets
- Dominant background: W + jets and $t\bar{t}$.
 - Suppressed with cuts on transverse mass

 $m_{\rm T} = \sqrt{2p_{\rm T}^{\ell} E_{\rm T}^{\rm miss} (1 - \cos[\Delta \phi(\vec{\ell}, \boldsymbol{p}_{\rm T}^{\rm miss})])}$

– Estimated from CRs, e.g., for soft-*l* 2-jets:

A. Soffer, ATLAS SUSY Run-2, Valparais

Some SR distributions

[dev] 1400 E

1200

1000

800

600

2000

m_ã [GeV]

1800

2000

1800

m_ã [GeV]

ATLAS 8 TeV, 20.3 fb

(n'o

ATLAS Preliminary

1-lepton + jets + E_{τ}^{miss} √s=13 TeV, 3.3 fb⁻¹

Observed limit (| $\downarrow \phi_{\text{theory}}^{\text{SUSY}}$

Expected limit ($| \mathfrak{1} \phi_{av}$

All limits at 95% CL

4/7. Search with same-sign dileptons or 3 leptons

	Signal region	$N_{\rm lept}^{\rm signal}$	$N_{b{ m jets}}^{20}$	$N_{\rm jets}^{50}$	$E_{\rm T}^{\rm miss}$ [GeV]	$m_{\rm eff}$ [GeV]
	SR0b3j	≥3	=0	≥3	>200	>550
Background estimation:	SR0b5j	≥ 2 SS	=0	≥5	>125	>650
XX7 1 (1	SR1b	≥ 2 SS	≥1	≥4	>150	>550
• Wrong lepton charge:	SR3b	≥ 2 SS	≥3	-	>125	>650

- $Z/\gamma^* \rightarrow e^+e^-$ sample
- Fake leptons or leptons from heavy-flavor-decay:
 - "Matrix method" with loose lepton selection criteria
- *ttV*, *tth*:
 - From MC with VRs

MET distributions in SRs

23

	SR0b3j	SR0b5j	SR1b	SR3b
Observed events	3	3	7	1
Total bkg events $p(s = 0)$	2.4 ± 0.7 0.33	$0.98 \pm 0.32 \\ 0.06$	$4.3 \pm 1.0 \\ 0.12$	0.78 ± 0.24 0.36
Fake/non-prompt leptons Charge flip $t\bar{t}W, t\bar{t}Z$ WZ $W^{\pm}W^{\pm}jj$ ZZ Triboson	< 0.2 - 0.13 ± 0.06 1.5 ± 0.5 - 0.6 ± 0.4 0.09 ± 0.05	$\begin{array}{c} 0.04^{+0.17}_{-0.04}\\ 0.02\pm0.01\\ 0.11\pm0.06\\ 0.61\pm0.25\\ 0.11\pm0.05\\ < 0.14\\ 0.02\pm0.01\\ 0.05\pm0.04\end{array}$	$\begin{array}{c} 0.8 \pm 0.8 \\ 0.60 \pm 0.12 \\ 2.0 \pm 0.7 \\ 0.17 \pm 0.09 \\ 0.03 \pm 0.01 \\ < 0.03 \\ 0.02 \pm 0.01 \\ 0.02 \pm 0.01 \end{array}$	$\begin{array}{c} 0.12 \pm 0.16 \\ 0.19 \pm 0.06 \\ 0.21 \pm 0.09 \\ < 0.02 \\ < 0.01 \\ < 0.03 \\ < 0.01 \end{array}$

(b) $\tilde{g} \rightarrow q\bar{q}'WZ\tilde{\chi}_1^0$ scenario, SR0b5j

5/7. Search with at least 3 *b*-jets

p

p

8 SRs:

- $\geq 3 b$ -jets
- 0 or 1 lepton
- 0 or \geq 1 top (R = 1 jet)

Background Estimation:

- *tt*
 - From CR for each SR
- $t\bar{t}V, t\bar{t}h$, single-t, 4t, V+jets
 - From MC

b

b

p

p

 $\tilde{\chi}_1^0$

• MET distributions in some SRs:

 $\tilde{\chi}_1^0$

Results of background-only fit in VRs

6/7. Search for sbottom pair

4 **SRs**:

- 3 "SRA" target pair production
- SRB target pair production with ISR jet

Variable	SRA	SRB			
Event cleaning	Common to all SR				
Lepton veto	No e/μ with $p_{\rm T} > 10$ GeV after overlap remova				
$E_{ m T}^{ m miss}$	> 250 GeV	> 400 GeV			
Leading jet $p_{\rm T}(j_1)$	> 130 GeV	> 300 GeV			
2nd jet $p_{\rm T}(j_2)$	> 50 GeV	> 50 GeV			
Fourth jet $p_{\rm T}(j_4)$	vetoed if $> 50 \text{ GeV}$				
$\Delta \phi^j_{ m min}$	> 0.4	> 0.4			
$\Delta \phi(j_1, E_{\rm T}^{\rm miss})$	-	> 2.5			
<i>b</i> -tagging	j_1 and j_2	j_2 and $(j_3 \text{ or } j_4)$			
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.25			
m _{CT}	> 250, 350, 450 GeV	-			
m _{bb}	> 200 GeV	-			

Main discriminator: contraverse mass,

$$m_{\rm CT}^2(v_1, v_2) = [E_{\rm T}(v_1) + E_{\rm T}(v_2)]^2 - [\boldsymbol{p}_{\rm T}(v_1) - \boldsymbol{p}_{\rm T}(v_2)]^2$$

Background:

Can be used to measure $m_{\tilde{b}}$

- $t\bar{t}$ and V + heavy flavor
 - Studied with CRs containing leptons

Signal region channels	SRA250	SRA350	SRA450	SRB
Observed events	22	6	1	5
Fitted bkg events	40 ± 8	9.5 ± 2.6	2.2 ± 0.6	13.1 ± 3.2
Fitted <i>tī</i> events	0.9 ± 0.4	0.37 ± 0.16	0.06 ± 0.03	5.9 ± 2.4
Fitted single top events	2.1 ± 1.3	0.54 ± 0.37	0.15 ± 0.10	1.2 ± 0.8
Fitted W+jets events	6.3 ± 2.4	1.3 ± 0.6	0.41 ± 0.23	1.2 ± 0.6
Fitted Z+jets events	30 ± 7	7.1 ± 2.4	1.5 ± 0.5	3.3 ± 1.4
(Alt. method Z+jets events)	(33 ± 7)	(7.2 ± 1.9)	(2.7 ± 0.9)	
Fitted "Other" events	0.7 ± 0.6	0.1 ± 0.1	0.02 ± 0.02	1.4 ± 0.4
	~	0		

Bottom squark pair production, $\widetilde{b}_1 \rightarrow b ~\widetilde{\chi}_1^{\upsilon}$ 800 [.... Observed limit (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$) ATLAS Preliminary Expected limit ($\pm 1 \sigma_{exp}$) ____ √s=13 TeV, 3.2 fb⁻¹ 600 ATLAS E_T^{miss} + 2 b-jets, 20.1 fb⁻¹, Vs=8 TeV All limits at 95% CL ATLAS monojet, 20.3 fb⁻¹, Vs=8 TeV Best SR 500 400 300 200 100 0 100 200 700 800 900 1000 1100 300 400 500 600 $m_{\tilde{b}_1}$ [GeV]

7/7. Search with $Z \rightarrow \ell^+ \ell^-$

	SRZ
Observed events	21
Total expected background events	10.3 ± 2.3
Flavour symmetric ($t\bar{t}$, Wt , WW and $Z \rightarrow \tau\tau$) events	5.1 ± 2.0
WZ/ZZ events	2.9 ± 0.8
Z/γ^* + jets events	1.9 ± 0.8
Rare top events	0.4 ± 0.1
<i>p</i> -value	0.013
Significance	2.2
Observed (Expected) S^{95}	$20.0\ (10.2^{+4.4}_{-3.0})$

Conclusions

- ATLAS doing very well in Run-2 ($3.2 \pm 0.2 \text{ fb}^{-1}$)
- Completed 7 analyses to search for SUSY signatures
 - Focusing on strong production improvement wrt. Run-1
 - No excess signal found
 - Mass limits almost always tighter than those of Run-1
- Working hard on many more SUSY searches with Run-2 data

