



# Recent results on Exotic searches from the ATLAS experiment at the LHC

J. Benitez (The University of Iowa)



## representing the ATLAS collaboration

January 7, 2016

6<sup>th</sup> International Workshop on High Energy Physics in the LHC Era

# New results at $\sqrt{s} = 13 \text{ TeV}$

- Leptonic final states:
  - e/ $\mu$  and missing energy
  - $-e^+e^-, \mu^+\mu^-$
  - $e^{+}\mu^{-}$
- Di-jet/photon mass spectra:
  - jet-jet
  - γ-jet
  - γ-γ
- Di-boson resonances:
  - *WZ*, *WW*, *ZZ*,
  - *WH*, *ZH*





## Object performance at 13 TeV

- Electrons and Muons calibrated with Z events
- Differences in efficiency and energy scale corrected

- Jet calibration based on Run I extrapolation and checked in multi-jet events.
- Missing energy resolution checked with  $Z \rightarrow \mu\mu$  events



## Leptonic final states

Tests for Z' or W' gauge bosons

# lepton + E<sub>T</sub>miss

- Reconstruct exactly one isolated lepton with  $p_T > 65 \text{GeV}$ .
- The missing transverse energy in the event must exceed 55 GeV.
- Search in the transverse mass:

$$m_{\rm T} = \sqrt{2p_{\rm T}E_{\rm T}^{\rm miss}(1-\cos\phi_{\ell\nu})},$$

Test for heavy spin-1 W' bosons.

## Event with one electron



# **Electrons**









## search in $e^+e^-$ , $\mu^+\mu^-$

- Select a pair of leptons
  - well isolated
  - matched to the primary vertex
  - $E_T$  or  $p_T > 30$  GeV.
- Main background from Drell-Yan Z/γ production.
- Test di-lepton masses up to 5 TeV!
- Search for heavy Z' bosons or contact interactions.











## search in e<sup>+</sup>µ<sup>-</sup>

- Require different flavor leptons
- Main background from  $tt \rightarrow W^+W^-$
- Test for LFV in Z' models and quantum black holes in RS and ADD models.
- No excess observed.







## di-jet, γγ, γ-jet mass spectra

Tests for  $q^*$ , quantum black holes, Z'/W', heavy Higgs models

## di-jet resonances



arXiv:1512.01530v2

- Jet selections:
  - $p_T(j_1) > 440 \text{ GeV}, p_T(j_2) > 50 \text{ GeV}$
  - compatibility with primary vertex
- Multi-jet background reduced with requirement on rapidity difference  $|y^*| = |(y_1-y_2)/2| < 0.6$
- Di-jet mass resolution  $\sim 2\%$  over full mass range
- Background modeled with a power law function.
- Look for a narrow resonance or an excess.



## di-jet angular analysis

arXiv:1512.01530v2

- Angular analysis performed in slices of m<sub>ii</sub> above 2.5 TeV
- Define frame invariant rapidity variable

$$\chi = e^{2|y^*|}$$

• Signal expected at low χ for quantum black holes and contact interaction models





## di-jet results

arXiv:1512.01530v2

- The m(jj) region above 5.4 TeV was previously unexplored.
- Large improvements in the exclusion limits over Run I.

| Model                                         | 95% CL Exclusion limit |                 |                 |
|-----------------------------------------------|------------------------|-----------------|-----------------|
|                                               | Run 1 Observed         | Observed 13 TeV | Expected 13 TeV |
| Quantum black holes, ADD (BlackMax generator) | 5.6 TeV                | 8.1 TeV         | 8.1 TeV         |
| Quantum black holes, ADD (QBH generator)      | 5.7 TeV                | 8.3 TeV         | 8.3 TeV         |
| Quantum black holes, RS (QBH generator)       | _                      | 5.3 TeV         | 5.1 TeV         |
| Excited quark                                 | 4.1 TeV                | 5.2 TeV         | 4.9 TeV         |
| W'                                            | 2.5 TeV                | 2.6 TeV         | 2.6 TeV         |
| Contact interactions ( $\eta_{LL} = +1$ )     | 8.1 TeV                | 12.0 TeV        | 12.0 TeV        |
| Contact interactions ( $\eta_{LL} = -1$ )     | 12.0 TeV               | 17.5 TeV        | 18.1 TeV        |



## γ+jet search

- Test quantum black holes (QBH) and excited quark models
- Events are selected with a well isolated photon. Both the photon and jet must have  $E_T > 150 \text{ GeV}$
- $\gamma$ +jet mass resolution is ~2.5% up to 6 TeV
- Exclusion limits surpass Run I analysis.



#### arXiv:1512.05910





## γγ search

- Select two isolated photons
- Photon energy calibrated using  $Z \rightarrow$  ee events
- Energy selections relative to the signal mass  $E_{\rm T}^{\gamma_1}/m_{\gamma\gamma} > 0.4$  and  $E_{\rm T}^{\gamma_2}/m_{\gamma\gamma} > 0.3$
- Signal efficiencies range between 20-45% depending on the mass and production mechanism
- Main background is from non-resonant di-photon (90%) and jet (10%) production









01/07/2016

## 13 TeV γγ results

- Run II shows some excess at  $m(\gamma\gamma) \sim 750 \text{ GeV}$
- Significance: local ~3.6σ, global ~2.0 sigma, estimated using a narrow width signal model.
- Using width  $\Gamma$ ~45 GeV gives larger significances: 3.9 $\sigma$  local (**2.3\sigma global**)
- Run I analysis did not see excess, but is still compatible within 2.3 $\sigma$  of the current result assuming gluon fusion production.

## ATLAS-CONF-2015-081







01/07/2016 Jose Benitez, ATLAS Exo. results

# Diboson Resonances WW, WZ, ZZ, WH, ZH



## Boosted Boson tagging

- Use large-R (1.0) jets for boosted W, Z, or Higgs reconstruction.
- Grooming/trimming is applied using small-R (0.2) sub-jets.
- Jet energy and mass are corrected with simulation
- Discriminate against QCD jets with jet substructure variables: p<sub>T</sub> dependent energy correlation (D2) and track multiplicity
- Higgs tagging uses R=0.2 track jets associated to the large-R jet.



### W,Z jets



### Higgs jets





## ZZ, WW, WZ with di-jets

- Search for resonances with two boson-tagged jets.
- Multi-jet background reduced with selections on di-jet rapidity difference  $|y^*| < 1.2$  and jet track multiplicity ( $n_{trk} < 30$ )
- Signal efficiency is nearly constant.
- Run I results showed a 3.4 σ excess at 2 TeV in the WZ distribution.





### Run I WZ search







## ZZ, WW, WZ with di-jets

## 13 TeV results

ATLAS-CONF-2015-073

- No clear excess observed, but sensitivity not strong enough to exclude Run I excess
- Background model:

$$\frac{dn}{dx} = p_1(1-x)^{p_2+\xi p_3} x^{p_3},$$

 Test narrow resonances with HVT model and RS black holes in ZZ





# $WZ \rightarrow qqvv, qqll$

### ATLAS-CONF-2015-068 ATLAS-CONF-2015-071

- Events triggered with missing energy or di-lepton from Z
- Reconstruct W with bosontagged large-R jet
- Signal mass resolution is ~20% for vvqq, ~8% for llqq
- Main background from Z+jet events.
- Test narrow W' models.











## $WZ, WW \rightarrow 1vqq$

- Trigger events with single isolated lepton from the W.
- Neutrino p<sub>Z</sub> estimated by applying W mass constraint.
- Reconstruct additional Z or W with tagged large-R jet.
- Test narrow Z'/W' models.









## WH, ZH $\rightarrow$ lvbb, vvbb, llbb

- Explore high mass, Run I analysis stopped at 1.8 TeV
- Final states depending on W or Z decay, leptons/E<sub>T</sub><sup>miss</sup> used for trigger
- Higgs identification with 1 or 2 b-tagged track jets in large-R jet



## Conclusions

- A summary has been presented of the new exotic results from the 13 TeV data-set collected by ATLAS.
- Searches have been carried out with di-leptons and a lepton plus missing energy, as well as with pairs of photons and jets.
- Searches with a pair of vector bosons or a vector boson and the Higgs boson have been performed at high mass using boosted reconstruction techniques.
- The sensitivity in many of these searches already exceeds that of Run I and new mass regions have been explored.
- In the di-photon mass spectra the region around 750 GeV exhibits an excess of events with a global significance of ~2.3 standard deviations. More data is needed this mass region.

For a complete description of these results see the ATLAS public webpage: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/December2015-13TeV

## additional slides



## multi-jet events

arXiv:1512.02586v1

- Use scalar sum of transverse jet energy in the event (H<sub>T</sub>)
- Look for events with large multiplicity  $(n_{iet} \ge 3)$
- Background shape determined in iterative steps (bootstrap)
- Test strong gravity, micro black holes and string ball production
- Large improvement over Run I in black hole threshold mass exclusion







# $ZZ \rightarrow vvqq, 1+1-qq$

ATLAS-CONF-2015-068 ATLAS-CONF-2015-071

- Reconstruct missing energy or di-lepton and large-R jet
- Mass resolution is ~20% (vvqq),
  ~8% (llqq)
- Background dominated by Z+jet events
- Test QBH (RS G\*), HVT Z', and Heavy Higgs models







