Open heavy-flavour production in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

Cristiane Jahnke for the ALICE Collaboration

Universidade de São Paulo, Brazil

- ALICE overview
- Motivation
 - ✓ Why to study open heavy flavours?
 - ✓ Why to study pp, p-Pb and Pb-Pb collisions?
- Collision systems studied with ALICE
- How to study open heavy flavours?
- Selected open heavy-flavour studies with ALICE
 - ✓ pp results
 - ✓ p-Pb results
 - ✓ Pb-Pb results
- Conclusions

Dedicated experiment to study heavy-ion collisions and the QGP.

✓ The Quark Gluon Plasma (QGP) is a high energy-density state of stronglyinteracting matter in which partons are deconfined.

 ✓ This state of matter can be studied experimentally only via heavy-ion (A-A) collisions at high energy where the necessary energy density for the phase transition to the QGP can be attained.

 ✓ ALICE can perform various measurements to study the QGP: heavy flavours, light flavours, photons, jets, quarkonia, etc.

Dedicated experiment to study heavy-ion collisions and the QGP.

And more:

HMPID (High-Momentum Particle Identification Detector), PHOS (PHOton Spectrometer), ACORDE (Alice Cosmic Ray DEtector), ZDC (Zero Degree Calorimeter), PMD (Photon Multiplicity Detector), FMD (Forward Multiplicity Detector) and TO.

ITS (Inner Tracking System):

- Tracking
- Vertexing
- Particle identification (PID)

TPC (Time Projection Chamber):

- Tracking
- PID

TRD (Transition Radiation Detector):

- PID
- Trigger

TOF (Time Of Flight):

• PID

EMCal (Electromagnetic Calorimeter):

- PID
- Trigger

V0 detector:

- Centrality
- Trigger

Muon spectrometer:

- Muon ID
- Trigger
- Tracking

Motivation: why to study open heavy flavours?

 Heavy-flavour particles contain charm or beauty quarks:

 \checkmark B meson, D meson, Λ_c and Λ_b

• They are produced (in hard scatterings) in the early stages of the collision:

✓ Large mass (m_{c,b} >> Λ_{QCD})
 -> short formation time
 -> hard probes, even at low p_T

C quark A A B

They can experience the full evolution of the system:
 ✓ They live much longer (around 10⁻¹¹ sec) than the duration of the QGP (around 10⁻²³ sec)

Figure from Ralf Averbeck presentation at Quark Matter 2015

Motivation: why to study Pb-Pb, p-Pb and pp collisions?

- Pb-Pb collisions:
 - ✓ Formation of a Quark-Gluon Plasma (QGP) is expected.
 - \checkmark Study the properties of QGP.
 - \checkmark Parton energy loss via radiative and elastic processes.
 - ✓ Use pp collisions as reference.

Motivation: why to study Pb-Pb, p-Pb and pp collisions?

• p-Pb collisions:

 ✓ Intermediate state between pp collisions and Pb-Pb collisions.

✓ Control experiment for Pb-Pb measurements.

✓ Cold nuclear matter effects can be studied:

In Nuclear modification of Parton Distribution Figure from JHEP 0904 (2009) 065
Function (shadowing/saturation/CGC)

- *k*_T broadening
- Energy loss

✓ Reference for studies with p-Pb collisions and Pb-Pb collisions.

✓ Test for perturbative QCD calculations. 1/6/16 Cristiane Jahnke

- **pp collisions:** $\sqrt[4]{\sqrt{s}} = 0.9, 2.76, 7 \text{ and } 8 \text{ TeV}$

• p-Pb collisions: $\sqrt[4]{s_{NN}} = 5.02 \text{ TeV}$

• Pb-Pb collisions: $\sqrt[4]{s_{NN}} = 2.76 \text{ TeV}$

How to study open heavy flavours?

Nuclear modification factor:

$$R_{\rm AA} = \frac{1}{N_{\rm coll}} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}N_{\rm pp}}/{\rm d}p_{\rm T}$$

✓ Defined as the ratio of the p_{T} -differential yield measured in A-A collisions and the corresponding yield in pp collisions multiplied by the number of binary collisions;

- ✓ It is used to quantify medium effects and helps to understand the energy loss in the QGP:
 If R_{AA} = 1 (at high p_T) -> no medium effects and no nuclear effects.
 - If $R_{AA} < 1$ (at high p_T) -> energy loss of the partons shifts the momentum spectra of the heavy-flavour particles.

✓ Expected mass dependence of energy loss due to colour-charge and dead cone effect:

 \checkmark The nuclear modification factor is also studied in a control experiment, in p-A collisions, to quantify cold nuclear matter effects.

$$R_{\rm pPb} = \frac{1}{N_{\rm coll}} \frac{dN_{\rm pPb}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}} = \frac{1}{A} \frac{d\sigma_{\rm pPb}/dp_{\rm T}}{d\sigma_{\rm pp}/dp_{\rm T}}$$

How to study open heavy flavours?

Anisotropic flow:

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left(1+2\sum_{n=1}^{\infty}v_{n}\cos\left[n(\varphi-\Psi_{RP})\right]\right)$$
$$v_{n}(p_{\mathrm{T}},y) = \left\langle\cos\left[n(\varphi-\Psi_{RP})\right]\right\rangle$$

 \checkmark The second Fourier coefficient is called elliptic flow (v_2).

 ✓ Anisotropic flow is caused by the initial asymmetries in the geometry of the system produced in a non-central collision.

✓ Initial spatial anisotropy of the created particles is converted in momentum anisotropy due to the pressure gradients.

 \checkmark Thermalized particles participate in the collective motion;

Fig. from arXiv:1102.3010v2

Open heavy flavours in ALICE

Open heavy-flavour studies with ALICE are done via the following channels:

✓ Hadronic decays:

Reconstruction of D⁺, D⁰, D^{*+} and D_s⁺ via their hadronic decays:

- D⁺ -> K⁻π⁺π⁺ (BR=9.13%)
- D⁰ -> K⁻π⁺ (BR=3.88%)
- $D^{*+} \rightarrow D^{0}\pi^{+}$ (BR=67.7%)
- D_s⁺ -> φπ⁺ -> K⁺K⁻π⁺ (BR=2.28%)
- ✓ Semileptonic decays (electrons and muons)
 - Semi-leptonic decay channels have a branching ratio of the order of 10%:
 - B, D -> I + X

 \checkmark TPC signal: specific energy deposit dE/dx in the TPC expressed in terms of the deviation from the expected hadron dE/dx (measured in units of standard deviations σ);

 \checkmark D-meson ID via the reconstruction of their hadronic decays: invariant mass

- D⁺ -> Κ⁻π⁺π⁺
- D⁰ -> K⁻π⁺
- $D^{*+} -> D^0 \pi^+$
- D_c⁺ -> φπ⁺ -> K⁺K⁻π⁺

S $(3\sigma) = 408 \pm 75$ $S/B(3\sigma) = 0.07$

1.75 1.8 1.85

0.145

ALI-PUB-9924^M(Kππ)-M(Kπ) (GeV/c²)

0.14

1.9 1.95

 $S(3\sigma) = 317 \pm 96$ $S/B(3\sigma) = 0.06$

0.15

M(Kππ) (GeV/c²)

✓ TPC signal combined with TOF signal leads to more pure electron sample at low p_T than TPC-only or TOF-only.

✓ Electron ID based on *E/p*, where *p* is the momentum measured by TPC and *E* the energy measured by EMCal.

✓ Non-HFE background (photon conversions, η and π^0 Dalitz decays, mainly) removed using cocktail or invariant mass method.

✓ Separation of electrons from beautyhadron decays using the impact parameter (the distance of closest approach of the track to the interaction vertex);

 \checkmark Longer life time of beauty hadrons implies a broader distribution of impact parameter.

 10^3

Particle Identification with ALICE: muons

Muons reconstructed in the forward muon spectrometer

Figure from Zuman Zhang poster presented in QM2016

Figures from http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_dim_spec.html

✓ Absorber: to absorb hadrons and photons from the interaction vertex;

- ✓ Tracking chambers: 10 detection planes, which gives two-dimensional hit information;
- ✓ Filter: passive muon-filter wall to protect the trigger chambers;

✓ Trigger chambers: requires at least one single muon tracks, or at least two unlike-sign muon tracks, or at least two like-sign muon tracks (above a p_{T} cut).

✓ Geometrical cuts, tracking-trigger matching and pointing angle to vertex are used;

✓ Impact parameter cut to reject part of beam-gas interactions and decays;

- ✓ Remaining background subtracted with MC (pp) and data-tuned MC cocktail (p-Pb, Pb-Pb).
- \checkmark Low $p_{\rm T}$ cut to reject muons from secondary pions and kaons decays.

Results in pp collisions

ALICE

- e[±] from beauty decays at mid-rapidity
- pQCD calculations in reasonable agreement with data within uncertainties

- μ^{\pm} from HF decays at forward rapidity
- pQCD calculations in reasonable agreement with data within uncertainties

• pQCD calculations in reasonable agreement with data within uncertainties for all D-meson species.

pQCD calculations:

- FONLL: JHEP 1210(2012)37
- GM-VFNS: EPJ C72(2012)2082

Results in p-Pb collisions

Electrons:

•*R*_{pPb} of HF-decay e[±] consistent with unity and described by models including initial-state effects or radial flow within uncertainties;

- R_{pPb} of beauty-hadron decay electrons consistent with HF-decay electron R_{pPb} and with unity;
- Extension of HF-decay e^{\pm} in high- p_{T} using the EMCal trigger;
- No indication for suppression at intermediate/high $p_{\rm T}$

Cristiane Jahnke

Muons:

- Different rapidity ranges allows the study of different x regimes of heavy-flavour production.
- R_{pPb} of HF decay muons is consistent with unity at forward rapidity and slightly larger than unity at backward rapidity for 2 < p_T < 4 GeV/*c*.
- Described within uncertainties by models including cold nuclear matter effects.

 $R_{\rm pPb}$

1.8

1.4

0.6

0.4

0.2

ALI-PREL-72234

Results in Pb-Pb collisions

Pb-Pb results: semi-leptonic decay channels

- Similar suppression for HF decay electrons (|y| < 0.6) and muons (2.5 < y < 4) in high p_T
- Electrons from beauty decays suppressed above 3 GeV/c
- Strong suppression of the yields of HF decay electrons and muons in intermediate/high p_T indicates a strong modification of the spectra in central Pb-Pb collisions due to the energy loss in the parton level.
- Similar elliptic flow for HF decay electrons and muons in high $p_{\rm T}$
- $v_2 > 0$ confirms the strong interaction of heavy quarks with the medium
- Indication that heavy quarks participate in the collective expansion of the QGP 1/6/16 Cristiane Jahnke

 No suppression in p-Pb Observed suppression at intermediate/high p_{T} ($p_{T} > 2 \text{ GeV}/c$) in central Pb-Pb collisions at the LHC is due to the strong interaction of charm quarks with the QGP

particle v_2

- Increasing v_2 with decreasing centrality
- Indication of collective motion of low-p_T charm guarks in the medium

ALI-PUB-99591

LICE

14 16 18

 p_{\perp} (GeV/c)

- D-meson R_{AA} is compatible with pion R_{AA} within the uncertainties:
 - ✓ Colour-charge energy loss dependence;

✓ Softer fragmentation of gluons (light-flavour originates mainly from gluon fragmentation at LHC energy) ;

- ✓ Different shapes of the partons p_T distributions;
- Effects counterbalance the energy loss for light hadrons.

• Models including mass dependence of energy loss, different shape of parton p_T distributions and different fragmentation functions can explain: $R_{AA}(\pi) \approx R_{AA}(D)$ PRL 1124(2014)042302

Pb-Pb results: D mesons vs. non-prompt J/ ψ

 $R_{AA}(\pi) \leqslant R_{AA}(D) < R_{AA}(B)$

Non-prompt J/ ψ : B -> J/ ψ Measured by CMS: CMS-PAS-HIN-12-014

• Different suppression observed for D mesons and non-prompt J/ ψ :

- \checkmark Dead-cone effect reduces radiative energy loss (*E*/*m*);
- ✓ Collisional energy loss expected to be reduced for heavier quarks;
- Difference predicted by models including mass dependence of the energy loss

- R_{AA} and v_2 provides constraints to model;
- Simultaneous description of R_{AA} and v_2 still challenging;

BAMPS: heavy-quark transport using Boltzmann equation with collisional energy loss in an expanding QGP. JPG38 (2011) 124152 BAMPS el. + rad.: uses LPM (Landau-Pomeranchuk-Migdal) to include radiative energy loss.

JPG(2015)11,115106

TAMU: heavy-quark transport using resonant scatterings and recombination for the hadronization. PRC 86 (2012) 014903

POWLANG: heavy-quark transport using Langevin equation with collisional energy loss. EJC71 (2011) 1666 MC@HQ+EPOS Coll+Rad(LPM): includes collisional and radiative energy loss in an expanding medium, based on EPOS model. PRC79(2009)044906 WHDG: pQCD calculations including radiative and collisional energy loss. JG38 (2011) 124114 Cao,Quin,Bass: uses Langevin with a radiative term and includes recombination. PRC 92(2015)2,024907 UrQMD: uses Langevin approach implemented within the UrQMD model. arXiv:1211.6912

Conclusions

pp collisions

 Heavy-flavour cross sections are described by pQCD calculations within uncertainties.

p-Pb collisions

- Cold nuclear matter effects are small.
- Some models including collectivity in small systems can describe the data.

Pb-Pb collisions

- Strong interaction of heavy quarks with the QGP.
- Suppression of yields at high p_{T} consistent with partonic energy loss models.
- The strong suppression at high p_T is due to the hot and dense medium, since R_{pPb} is consistent with unity.
- Indication for charm participating in the collective expansion of the QGP.

Thank you for your attention!

Extra slides

- ✓ Main observables measured by ALICE:
 - Heavy flavour production and jet fragmentation: to probe energy loss in the plasma phase and parton kinematics;
 - Elliptic flow: sensitive to QGP properties (shear viscosity/ equation of state);
 - Prompt photons: to study the thermal radiation from the early phase;
 - Quarkonia production: probes deconfinement and parton recombination;
 - Particles ratios and p_{T} distributions: can reveal thermodynamical properties and hydrodynamical evolution of the medium.

Dedicated experiment to study heavy-ion collisions and the QGP.

ITS (Inner Tracking System):

- ✓ The ITS is a silicon detector.
- ✓ It is used to identify trajectories and determine the primary and secondary vertices.
- ✓ It is used for particle identification through the measurement of specific energy loss.
- ✓ It consists of six layers with three different technologies:
 - SPD Silicon Pixel Detector
 - SDD Silicon Drift Detector
 - SSD Silicon Strip Detector

Dedicated experiment to study heavy-ion collisions and the QGP.

TPC (Time Projection Chamber):

✓ The TPC is a gaseous detector.

✓ It is the main tracking detector of the ALICE.

 ✓ It is used for particle identification through the measurements of specific energy loss in the gas.

✓ The detector consists of a big cylinder with internal radius of 85 cm and external radius of 250 cm. Its length in the beam direction is 500 cm.

Dedicated experiment to study heavy-ion collisions and the QGP.

TRD (Transition Radiation Detector):

 ✓ It consists of a radiator, followed by a drif section and a multi-wire proportional chamber;

✓ The main purpose of the TRD is to provide electron identification;

 ✓ Specific energy loss in the gas (X_e/ CO₂) is used to separate electrons and hadrons;

✓ It covers 360° in the azimuthal direction and in pseudo-rapidity the acceptance is $-0.84 \le \eta \le 0.84$.

Dedicated experiment to study heavy-ion collisions and the QGP.

TOF (Time-Of-Flight):

✓ TOF is a detector used to identify particles in the range 0.2 to 2.5 GeV/c.

✓ The particle identification is based on the time-of-flight of the particles.

✓ The detector consists of a Multi-gap Resistive-Plate Chamber (MRPC), filled with gas.

 ✓ It consists of a large area array in the pseudo-rapidity region of -0.9 ≤ η
 ≤ 0.9. The azimuthal coverage is 360 degrees.

Dedicated experiment to study heavy-ion collisions and the QGP.

EMCal (ElectroMagnetic Calorimeter):

✓ It measures energy of electrons and photons: the signal produced by the particle is proportional to the energy deposited.

✓ It is composed of alternating layers of Pb and scintillator (polystirene).

✓ It covers 107 degrees in the azimuthal direction and in pseudo-rapidity the acceptance is $-0.7 \le \eta \le 0.7$.

✓ It is used as trigger;

✓ Run 2: DCAI with 60 degrees in the azimuthal.

Dedicated experiment to study heavy-ion collisions and the QGP.

V0:

✓ The V0 is a scintillator detector used as trigger for minimum bias events.

✓ It is also used to measure the centrality of the collisions.

 ✓ The V0 is composed of two sections:
 V0A and V0C, located in each side of the interaction point.

✓ The VOA is located 340 cm from the vertex and the VOC is located 90 cm from the vertex.

Dedicated experiment to study heavy-ion collisions and the QGP.

Muon spectrometer:

✓ Designed to detect muons at forward rapidity -4.0 ≤ η ≤ -2.5.

- \checkmark The spectrometer consists of:
 - A passive front absorber to absorb hadrons and photons;
 - A high-granularity tracking system planes;
 - A large dipole magnet;
 - A passive muon filter wall;
 - Four planes of trigger chambers;

✓ Optimized to study heavy quark resonances.