

Tel Aviv University

Pentaquarks, doubly heavy exotic mesons and baryons and how to look for them

Marek Karliner Tel Aviv University

PRD91 (2015) 1, 014014 & PRD90 (2014) 9, 094007, PRL 115,112001, PLB 752,329, arxiv:1601:00565 with Jon Rosner JHEP 7,153(2013) with Shmuel Nussinov

HEP2016, Valparaiso, Jan 6, 2016

outline

exciting pentaquark results from LHCb

to understand, view in wider context

exotic hadrons with two heavy quarks.

- ullet QCD allows exotic states beyond qqq and $\bar{q}q$
- but:
 - mixing with ordinary excited hadrons
 - production rates often suppressed
 - rapid decay into f.s. with π -(s)
 - ⇒ very broad

- explains why light exotics so hard to pin down
- situation very different for $\bar{Q}Q\bar{q}q$ exotics:
- $\bar{Q}Q$ hardly mix with light quarks
- decay into quarkonium and π -(s) or two heavy-light mesons:

$$ar{Q}Qar{q}q
ightarrowar{Q}Q\ \pi \ ar{Q}Qar{q}q
ightarrow(ar{Q}q)\ (Qar{q})$$

⇒ clear signature of exotic nature

hadrons w. heavy quarks are much simpler:

heavy quarks almost static

ullet very small spin-dep. interaction $\propto 1/m_Q$

• key to accurate prediction of b quark baryons:

Possibility of Exotic States in the Upsilon system

Marek Karliner a^* and Harry J. Lipkin $a,b\dagger$

Abstract

Recent data from Belle show unusually large partial widths $\Upsilon(5S) \to \Upsilon(1S) \pi^+\pi^-$ and $\Upsilon(5S) \to \Upsilon(2S) \pi^+\pi^-$. The Z(4430) narrow resonance also reported by Belle in $\psi'\pi^+$ spectrum has the properties expected of a $\bar{c}cu\bar{d}$ charged isovector tetraquark $T^{\pm}_{\bar{c}c}$. The analogous state $T^{\pm}_{\bar{b}b}$ in the bottom sector might mediate anomalously large cascade decays in the Upsilon system, $\Upsilon(mS) \to T^{\pm}_{\bar{b}b}\pi^{\mp} \to \Upsilon(nS)\pi^+\pi^-$, with a tetraquark-pion intermediate state. We suggest looking for the $\bar{b}bu\bar{d}$ tetraquark in these decays as peaks in the invariant mass of $\Upsilon(1S)\pi$ or $\Upsilon(2S)\pi$ systems. The $\bar{b}bu\bar{s}$ tetraquark can appear in the observed decays $\Upsilon(5S) \to \Upsilon(1S)K^+K^-$ as a peak in the invariant mass of $\Upsilon(1S)K$ system. We review the model showing that these tetraquarks are below the two heavy meson threshold, but respectively above the $\Upsilon\pi\pi$ and $\Upsilon K\bar{K}$ thresholds.

Observation of two charged bottomonium-like resonances

The Belle Collaboration

(Dated: May 24, 2011)

Abstract

We report the observation of two narrow structures at $10610 \,\mathrm{MeV}/c^2$ and $10650 \,\mathrm{MeV}/c^2$ in the $\pi^{\pm}\Upsilon(nS)$ (n=1,2,3) and $\pi^{\pm}h_b(mP)$ (m=1,2) mass spectra that are produced in association with a single charged pion in $\Upsilon(5S)$ decays. The measured masses and widths of the two structures averaged over the five final states are $M_1 = 10608.4 \pm 2.0 \,\mathrm{MeV}/c^2$, $\Gamma_1 = 15.6 \pm 2.5 \,\mathrm{MeV}$ and $M_2 = 10653.2 \pm 1.5 \,\mathrm{MeV}/c^2$, $\Gamma_2 = 14.4 \pm 3.2 \,\mathrm{MeV}$. Analysis favors quantum numbers of $I^G(J^P) = 1^+(1^+)$ for both states. The results are obtained with a $121.4 \,\mathrm{fb}^{-1}$ data sample collected with the Belle detector near the $\Upsilon(5S)$ resonance at the KEKB asymmetric-energy e^+e^- collider.

5 narrow exotic states close to meson-meson thresholds

state	mass MeV	width MeV	$ar{Q}Q$ decay mode	phase space MeV	nearby threshold	Δ <i>E</i> MeV
X(3872)	3872	< 1.2	$J/\psi \pi^+\pi^-$	495	$ar{D}D^*$	< 1
$Z_b(10610)$	10608	21	γ_π	1008	$ar{B}B^*$	2 ± 2
$Z_b(10650)$	10651	10	γ_π	1051	$ar{B}^*B^*$	2 ± 2
$Z_c(3900)$	3900	24 - 46	$J/\psi\pi$	663	$ar{D}D^*$	24
$Z_c(4020)$	4020	8 - 25	$J/\psi\pi$	783	$ar{D}^*D^*$	6
×					$ar{D}D$	
×					ĒВ	

- masses and widths approximate
- quarkonium decays mode listed have max phase space
- offset from threshold for orientation only, v. sensitive to exact mass

The Z_Q resonances decay into

 $\bar{Q}Q\pi$

 \implies must contain both $\bar{Q}Q$ and $\bar{q}q$, q=u,d

⇒ manifestly exotic

X(3872): a mixture of $\bar{D}D^*$ and $\chi_{c1}(2P)$

tetraquarks or a "hadronic molecules"?

The molecule idea has a long history: Voloshin Okun (1976), de Rujula, Georgi Glashow (1977) Tornqvist, Z. Phys. C61,525 (1993)

all states close to two-meson thresholds

despite large phase space (hundreds of MeV) narrow widths in decays into $\bar{Q}Q\pi$

 \implies very small overlap of wave functions: $|\langle i|f\rangle|^2\ll 1$ strong hint in favor of molecular interpretation

$$rac{\Gamma(Z_c(3885) o ar{D}D^*)}{\Gamma(Z_c(3885) o J/\psi\pi)} = 6.2 \pm 1.1 \pm 2.7$$

(BESIII/Yu-Ping Guo @EQCD, Jinan 6/2015)

overlap of Z_c wave function with $J/\psi\pi$ much smaller than with $\bar{D}D$

⇒ indicates an extended object

new result from Belle (analysis by Alexei Garmash):

$$rac{\Gamma(Z_b(10610) o ar{B}B)}{\Gamma(Z_b(10610) o \Upsilon(1S)\pi)} pprox rac{83\%}{0.6\%} = \mathcal{O}(100)$$

despite 1000 MeV of phase space

for $\Upsilon(1S)\pi$ vs few MeV for $\bar{B}B^*$!

BR-s of X(3872) to J/ψ and pions vs "fall apart" mode $\bar{D}D^*$

$${\rm BR}(\bar{D}D^*)\sim 10 imes$$
 BR(${\rm J}/\psi+X)$ despite -1 MeV vs $400-500$ MeV phase space

Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)

X(3872) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	$e^{+}e^{-}$	
Γ_2	$\pi^{+}\pi^{-}J/\psi(1S)$	> 2.6 %
Γ_3	$ ho^0 J/\psi(1S)$	
Γ_4	$\omega J/\psi(1S)$	> 1.9 %
Γ_5	$D^0 \overline{D}{}^0 \pi^0$	>32 %
Γ_6	$\overline{D}^{*0} D^0$	>24 %
_		

4 pieces of experimental evidence in support of molecular interpretation of Z_Q and X(3872):

- 1. masses near thresholds and J^P of S-wave
- 2. narrow width despite very large phase space
- 3. BR(fall apart mode) \gg BR(quarkonium + X)
- no states which require binding through
 pseudoscalar coupling

binding two hadrons through π exchange[†]:

explains conspicous absence of $\bar{D}D$ and $\bar{B}B$ resonances

e.g. $\bar{D}D$ resonance through π would require $DD\pi$ vertex. But 3-pseudoscalar vertex is forbidden in QCD by parity conservation.

another way to understand why no $D \to D\pi$: $J^P = 0^-$, so parity demands $D \to D\pi$ in P-wave; but D and π in P-wave give J = 1

 $\pi=$ shorthand for a light pseudoscalar, not necessarily physical pion

On the other hand, $\bar{D}D^*$ OK:

$$ar{D}
ightarrow ar{D}^* + \pi$$
 $D^* + \pi
ightarrow D$
so $ar{D}D^*
ightarrow ar{D}^*D$ and $ar{D}^*D
ightarrow ar{D}D^*$
physical state $= (ar{D}D^* + ar{D}^*D)/\sqrt{2}$
goes into itself under π exchange

$$\bar{D} * D^*$$
 also OK:

 $D^* o D^* + \pi$, P-wave L=1 can combine with S=1 to give back J=1; same for D^* , so $\bar{D}^*D^* o \bar{D}^*D^*$

Heavy-light $Q\bar{q}$ mesons have I=1

- \Rightarrow they couple to pions; $m_{Q\bar{q}}\gg m_N$
- \Rightarrow deutron-like meson-meson bound states, "deusons" pion exchange \rightarrow no $\bar{D}D$, only $\bar{D}D^*$, \bar{D}^*D^*

 $\bar{D}D^*$ (I = 0) at threshold: X(3872)!

S-wave $o J^P = 1^+$, confirmed by BESIII

 $I=1: 3\times$ weaker than I=0

 $\Rightarrow I = 1$ well above threshold

What about $\bar{B}B^*$ analogue ?....

$\bar{B}B*$ vs. $\bar{D}D*$:

- same attractive potential
- much heavier, so smaller kinetic energy
- \Rightarrow expect $\bar{B}B^*$ and \bar{B}^*B^* states near threshold
- $\Rightarrow Z_b(10610)$ and $Z_b(10650)$ seen by Belle!
- I=0 much stronger than I=1
- $\Rightarrow I = 0$ states expected well <u>below</u> thresholds

EXP signature:

$$X_b^{(*)}(I=0) \rightarrow \Upsilon(nS)\omega$$
, $\chi_b\pi^+\pi^-$ perhaps also

$$X_b^*(I=0) o ar{B}B^*\gamma$$
 via $ar{B}^* o ar{B}\gamma$

⇒ LHCb!

an amusing paper from CMS: null result in search for

$$X_b \rightarrow Y(1S)\pi^+\pi^-$$

is excellent news for the molecular picture,

since isoscalar
$$X_b$$
 with $J^{PC} = 1^{++}$

cannot decay into
$$\Upsilon(1S)\pi^+\pi^-$$

It can decay into $\Upsilon(1S)\omega$ or $\chi_b \pi^+\pi^-$

 X_b as mixture of $\bar{B}B^*$ (1⁺⁺) and χ_b (3P)

$$R_{\psi\gamma} \equiv rac{\mathcal{B}(X(3872) o \psi(2S)\gamma)}{\mathcal{B}(X(3872) o J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29 ext{ [LHCb]}$$

suggests that X(3872) is a mixture of $\chi_{c1}(2P)$ and $D^0\bar{D}^{*0}$

In the bottomonium system $\chi_{b1}(2P)$ is much too light, but $\chi_{b1}(3P)$ is near the expected X_b mass.

Seen in $\chi_{b1}(3P) \rightarrow \Upsilon(mS)\gamma$, m = 1, 2, 3

Values of $M(\chi_{b1}(3P))$ observed in various experiments.

Collaboration	Reference	Value (MeV/ c^2)
ATLAS	[17]	$10530 \pm 5 \pm 9$
D0	[18]	$10551 \pm 14 \pm 17$
LHCb (a)	[19]	$10511.3 \pm 1.7 \pm 2.5$
LHCb (b)	[20]	$10515.7_{-3.9-2.1}^{+2.2+1.5}$

*a biased sample

• X_b and $\chi_{1b}(3P)$ have the same quantum numbers

their masses are close

→ mixing is inevitable

 \Longrightarrow

 X_b might have been seen already, by ATLAS, D0 and LHCb, camouflaging as $\chi_{1b}(3P)$

necessary* conditions for existence of a resonance

- (a) both hadrons heavy, as $E_{kin} \sim 1/\mu_{RED}$
- (b) both couple to pions; one of them can have I=0, e.g. $\Sigma_c \bar{\Lambda}_c \xrightarrow{\pi} \Lambda_c \bar{\Sigma}_c$.
- (c) spin & parity which allow the state go into itself under one π exchange
- (d) $\Gamma(h_1) + \Gamma(h_2) \ll \Gamma(\text{molecule})$

^{*}may not be sufficient

the binding mechanism can in principle

apply to any two heavy hadrons

which couple to isospin

and satisfy these conditions,

be they mesons or baryons

 π exchange between two states with I_1 , I_2 and S_1 , S_2 :

$$V_{\mathrm{eff}} \sim \pm (I_1 \cdot I_2)(S_1 \cdot S_2)$$
 for $(qq, q\bar{q})$,

q or \bar{q} :

light quark(s) or antiquark(s) in hadrons 1 and 2,

- applies as long as the total spins S_i are correlated with the direction of the light-quark spins.
- true for D^* , B^* , Σ_c , and Σ_b

doubly-heavy hadronic molecules: most likely candidates with $Q\bar{Q}'$, Q=c, b, $\bar{Q}'=\bar{c}$, \bar{b} :

$$D\bar{D}^*$$
, $D^*\bar{D}^*$, D^*B^* , $\bar{B}B^*$, \bar{B}^*B^* ,

$$\Sigma_c \bar{D}^*$$
, $\Sigma_c B^*$, $\Sigma_b \bar{D}^*$, $\Sigma_b B^*$, the lightest of new kind

$$\Sigma_c \bar{\Sigma}_c$$
, $\Sigma_c \bar{\Lambda}_c$, $\Sigma_c \bar{\Lambda}_b$, $\Sigma_b \bar{\Sigma}_b$, $\Sigma_b \bar{\Lambda}_b$, and $\Sigma_b \bar{\Lambda}_c$.

 $c\bar{c}$ and $b\bar{b}$ states decay strongly to $\bar{c}c$ or $\bar{b}b$ and π -(s) $b\bar{c}$ and $c\bar{b}$ states decay strongly to B_c^{\pm} and π -(s)

QQ' candidates – dibaryons:

$$\Sigma_c \Sigma_c$$
, $\Sigma_c \Lambda_c$, $\Sigma_c \Lambda_b$, $\Sigma_b \Sigma_b$, $\Sigma_b \Lambda_b$, and $\Sigma_b \Lambda_c$.

prediction of doubly heavy baryon with hidden charm:

$$\Sigma_c ar{D}^* \equiv \Theta_{ar{c}c}$$
, $m_{\Theta_{ar{c}c}} pprox$ 4460 MeV,

possible decay mode: $\Theta_{cc} \rightarrow J/\psi p$

$$(S_1 \cdot S_2) (I_1 \cdot I_2)$$
 interaction: $I = 1/2 \to J = 3/2$

S-wave
$$\rightarrow J^P = 3/2^-$$

small overlap of molecular state with $J/\psi p$ \Longrightarrow narrow width \lesssim few tens of MeV despite > 400 MeV phase space

 $\Theta_{\bar{c}c}$ minimal quark content: $\bar{c}c$ uud

prediction of doubly heavy baryon with hidden charm:

$$\Sigma_c ar{D}^* \equiv \Theta_{ar{c}c}$$
, $m_{\Theta_{ar{c}c}} pprox$ 4460 MeV,

possible decay mode: $\Theta_{cc} \rightarrow J/\psi p$

$$(S_1 \cdot S_2) (I_1 \cdot I_2)$$
 interaction: $I = 1/2 \to J = 3/2$

S-wave
$$\rightarrow J^P = 3/2^-$$

small overlap of molecular state with $J/\psi p$ \Longrightarrow narrow width \lesssim few tens of MeV despite > 400 MeV phase space

 $\Theta_{\bar{c}c}$ minimal quark content: $\bar{c}c$ uud $\equiv P_c$ (4450) a molecule, not a tightly-bound pentaquark

Thresholds for $Q\bar{Q}'$ molecular states

Channel	Minimum	Minimal quark	Threshold	Example of
	isospin	content ^{a,b}	$(MeV)^c$	decay mode
$D\bar{D}^*$	0	с̄сq̄q	3875.8	$J/\psi \pi \pi$
$D^*ar{D}^*$	0	$car{c}qar{q}$	4017.2	$J\!/\psi\pi\pi$
D^*B^*	0	$car{b}qar{q}$	7333.8	$B_c^+\pi\pi$
$ar{\mathcal{B}}\mathcal{B}^*$	0	$bar{b}qar{q}$	10604.6	$\Upsilon({\it nS})\pi\pi$
$ar{B}^*B^*$	0	$bar{b}qar{q}$	10650.4	$\Upsilon(\mathit{nS})\pi\pi$
$oldsymbol{\Sigma_c}ar{D}^*$	1/2	c̄cqqq′	4462.4	$J\!/\psi$ р
$\Sigma_c B^*$	1/2	c̄bqqq′	7779.5	$B_c^+ p$
$arSigma_bar{D}^*$	1/2	b̄cqqq′	7823.0	B_c^-p
$\Sigma_b B^*$	1/2	$bar{b}qqq'$	11139.6	$\Upsilon(nS)p$
$\Sigma_car{\Lambda}_c$	1	c̄cqq'ū̄d̄	4740.3	$J\!/\!\psi\pi$
$\sum_{C} ar{\sum}_{C}$	0	$car{c}qq'ar{q}ar{q}'$	4907.6	$J\!/\psi\pi\pi$
$\Sigma_car{\Lambda}_b$	1	$car{b}qq'ar{u}ar{d}$	8073.3^{d}	$B_c^+\pi$
$\Sigma_bar{\Lambda}_c$	1	b̄cqq'ū̄d	8100.9^{d}	$B_c^-\pi$
$\varSigma_bar{\Lambda}_b$	1	$bar{b}qq'ar{u}ar{d}$	11433.9	$\Upsilon(n{\cal S})\pi$
$\Sigma_b \bar{\Sigma}_b$	0	$bar{b}qq'ar{q}ar{q}'$	11628.8	$\Upsilon(nS)\pi\pi$

^algnoring annihilation of quarks.

^bPlus other charge states when $I \neq 0$.

^cBased on isospin-averaged masses.

^dThresholds differ by 27.6 MeV.

arXiv:1507.03414v1 [hep-ex] 13 Jul 2015

CERN-PH-EP-2015-153 LHCb-PAPER-2015-029 July 13, 2015

New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules

Marek Karliner^{a†} and Jonathan L. Rosner^{b‡}

^a School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

^b Enrico Fermi Institute and Department of Physics University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637, USA

ABSTRACT

We predict several new exotic doubly-heavy hadronic resonances, inferring from the observed exotic bottomonium-like and charmonium-like narrow states X(3872), $Z_b(10610)$, $Z_b(10650)$, $Z_c(3900)$, and $Z_c(4020/4025)$. We interpret the binding mechanism as mostly molecular-like isospin-exchange attraction between two heavy-light mesons in a relative S-wave state. We then generalize it to other systems containing two heavy hadrons which can couple through isospin exchange. The new predicted states include resonances in meson-meson, meson-baryon, baryon-baryon, and baryon-antibaryon channels. These include those giving rise to final states involving a heavy quark Q=c,b and antiquark $\bar{Q}=\bar{c},\bar{b}$, namely $D\bar{D}^*$, $D^*\bar{D}^*$, D^*B^* , $\bar{B}B^*$, \bar{B}^*B^* , $\Sigma_c\bar{D}^*$, $\Sigma_c\bar{B}^*$, $\Sigma_b\bar{D}^*$, $\Sigma_b\bar{B}^*$, $\Sigma_b\bar{b}$, $\Sigma_b\bar{h}$, and $\Sigma_b\bar{h}_c$, as well as corresponding S-wave states giving rise to QQ' or $\bar{Q}Q'$.

Observation of $J/\psi\,p$ resonances consistent with pentaquark states in $\Lambda_b^0 \to J/\psi K^- p$ decays

The LHCb collaboration¹

Abstract

Observations of exotic structures in the $J/\psi p$ channel, that we refer to as pentaquark-charmonium states, in $A_b^0 \to J/\psi \, K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 ± 8 ± 29 MeV and a width of 205 ± 18 ± 86 MeV, while the second is narrower, with a mass of 4449.8 ± 1.7 ± 2.5 MeV and a width of 39 ± 5 ± 19 MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

Submitted to Phys. Rev. Lett.

New Exotic Meson and Baryon Resonances from Doubly Heavy Hadronic Molecules

Marek Karliner^{1,*} and Jonathan L. Rosner^{2,†}

¹School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences,

Tel Aviv University, Tel Aviv 69978, Israel

²Enrico Fermi Institute and Department of Physics, University of Chicago, 5620 S. Ellis Avenue, Chicago, Illinois 60637, USA

(Received 13 July 2015; published 14 September 2015)

We predict several new exotic doubly heavy hadronic resonances, inferring from the observed exotic bottomoniumlike and charmoniumlike narrow states X(3872), $Z_b(10610)$, $Z_b(10650)$, $Z_c(3900)$, and $Z_c(4020/4025)$. We interpret the binding mechanism as mostly molecularlike isospin-exchange attraction between two heavy-light mesons in a relative S-wave state. We then generalize it to other systems containing two heavy hadrons which can couple through isospin exchange. The new predicted states include resonances in meson-meson, meson-baryon, baryon-baryon, and baryon-antibaryon channels. These include those giving rise to final states involving a heavy quark Q = c, b and antiquark $\bar{Q}' = \bar{c}$, \bar{b} , namely, $D\bar{D}^*$, $D^*\bar{D}^*$, $D^*\bar{B}^*$, $\bar{B}^*\bar{B}^*$, $\bar{B}^*\bar{B}^*$, $\Sigma_c\bar{D}^*$, $\Sigma_c\bar{B}^*$, $\Sigma_b\bar{B}^*$, $\Sigma_c\bar{\Sigma}_c$, $\Sigma_c\bar{\Lambda}_c$, $\Sigma_c\bar{\Lambda}_b$, $\Sigma_b\bar{\Sigma}_b$, $\Sigma_b\bar{\Lambda}_b$, and $\Sigma_b\bar{\Lambda}_c$, as well as corresponding S-wave states giving rise to QQ' or $\bar{Q}\bar{Q}'$.

DOI: 10.1103/PhysRevLett.115.122001 PACS numbers: 14.20.Pt, 12.39.Hg, 12.39.Jh, 14.40.Rt

PRL 115, 072001 (2015)

Selected for a Viewpoint in *Physics*PHYSICAL REVIEW LETTERS

week ending 14 AUGUST 2015

3,

Observation of $J/\psi p$ Resonances Consistent with Pentaquark States in $\Lambda_b^0 \to J/\psi K^- p$ Decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 13 July 2015; published 12 August 2015)

Observations of exotic structures in the $J/\psi p$ channel, which we refer to as charmonium-pentaquark states, in $\Lambda_b^0 \to J/\psi K^- p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb⁻¹ acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis of the three-body final state reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of $4380 \pm 8 \pm 29$ MeV and a width of $205 \pm 18 \pm 86$ MeV, while the second is narrower, with a mass of $4449.8 \pm 1.7 \pm 2.5$ MeV and a width of $39 \pm 5 \pm 19$ MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

DOI: 10.1103/PhysRevLett.115.072001 PACS numbers: 14.40.Pq, 13.25.Gv

arXiv:1507.03414v1 [hep-ex] 13 Jul 2015

CERN-PH-EP-2015-153 LHCb-PAPER-2015-029 July 13, 2015

New Exotic Meson and Baryon Resonances from Doubly-Heavy Hadronic Molecules

Marek Karliner^{a†} and Jonathan L. Rosner^{b‡}

^a School of Physics and Astronomy Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv 69978, Israel

^b Enrico Fermi Institute and Department of Physics University of Chicago, 5620 S. Ellis Avenue, Chicago, IL 60637, USA

ABSTRACT

We predict several new exotic doubly-heavy hadronic resonances, inferring from the observed exotic bottomonium-like and charmonium-like narrow states $X(3872),\ Z_b(10610),\ Z_b(10650),\ Z_c(3900),\$ and $Z_c(4020/4025).$ We interpret the binding mechanism as mostly molecular-like isospin-exchange attraction between two heavy-light mesons in a relative S-wave state. We then generalize it to other systems containing two heavy hadrons which can couple through isospin exchange. The new predicted states include resonances in meson-meson, meson-baryon, baryon-baryon, and baryon-antibaryon channels. These include those giving rise to final states involving a heavy quark Q=c,b and antiquark $\bar{Q}=\bar{c},\bar{b}$, namely $D\bar{D}^*,\ D^*\bar{D}^*,\ D^*B^*,\ \bar{B}B^*,\ \bar{B}^*B^*,\ \Sigma_c\bar{D}^*,\ \Sigma_cB^*,\ \Sigma_b\bar{D}^*,\ \Sigma_bB^*,\ \Sigma_b\bar{b},\ \Sigma_b\bar{h}_b,\ \text{and}\ \Sigma_b\bar{\Lambda}_c,\$ as well as corresponding S-wave states giving rise to QQ' or $\bar{Q}\bar{Q}'$.

$\Sigma_c \bar{D}^*$ threshold = 4462 MeV

Observation of $J/\psi\,p$ resonances consistent with pentaquark states in $\Lambda_b^0 \to J/\psi K^- p$ decays

The LHCb collaboration¹

Abstract

Observations of exotic structures in the $J/\psi\,p$ channel, that we refer to as pentaquark-charmonium states, in $A_b^0\to J/\psi\,K^-p$ decays are presented. The data sample corresponds to an integrated luminosity of 3 fb^-l acquired with the LHCb detector from 7 and 8 TeV pp collisions. An amplitude analysis is performed on the three-body final-state that reproduces the two-body mass and angular distributions. To obtain a satisfactory fit of the structures seen in the $J/\psi\,p$ mass spectrum, it is necessary to include two Breit-Wigner amplitudes that each describe a resonant state. The significance of each of these resonances is more than 9 standard deviations. One has a mass of 4380 \pm 8 \pm 29 MeV and a width of 205 \pm 18 \pm 86 MeV, while the second is narrower, with a mass of 4449.8 \pm 1.7 \pm 2.5 MeV and a width of 39 \pm 5 \pm 19 MeV. The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

Submitted to Phys. Rev. Lett.

narrow resonance at $4449.8 \pm 1.7 \pm 2.5$ MeV

Feynman diagrams for (a) $\Lambda_b^0 \to J/\psi \Lambda^*$ and (b) $\Lambda_b^0 \to P_c^+ K^-$ decay.

Invariant mass squared of K^-p versus $J/\psi\,p$ for candidates within ± 15 MeV of the \varLambda_b^0

Invariant mass of (a) K^-p and (b) $J/\psi p$ combinations from $\Lambda_b^0 \to J/\psi K^-p$ decays. The solid (red) curve is the expectation from phase space. The background has been subtracted.

 $P_c(4450)$: predicted, narrow: $\Gamma=39\pm5\pm19$, 10 MeV from $\Sigma_c\bar{D}^*$ threshold perfect Argand plot: a molecule

 $P_c(4380)$: not predicted, wide: $\Gamma = 205 \pm 18 \pm 86$ MeV, Argand plot not resonance-like ???

The narrow width, 39 MeV, is a <u>problem for pentaquark</u> interpretation, given the large phase space of 400 MeV

$$\Gamma\left(P_c(4450) \to J/\psi p\right) = \left|\langle P_c(4450)|J/\psi p\rangle\right|^2 \times \text{(phase space)}$$

To get $\Gamma=39$ MeV, the matrix element must be small .

But in a pentaquark c and \bar{c} are close to each other within the same confinement volume, so overlap with J/ψ is generically large.

In a molecule narrow width is automatic:

c is in Σ_c , \bar{c} is in \bar{D}^* ; they are from each other, so overlap with J/ψ is generically small.

Decay of a tightly bound pentaquark vs. hadronic molecule to $J/\psi p$

2 $J/\psi p$ resonances with > 9 σ in $\Lambda_b \to J/\psi p K^ P_c(4450)$ very clean, but:

- $P_c(3380)$?
- J: (3/2,5/2) or (5/2,3/2)?
- P: (-,+) or (+,-) ?
- $m(P_c(4450)) = m_p + m_{\chi_{c1}}$
- "triangle singularity"
- ⇒ need a different production mechanism

radii of hadronic molecules

$$r(\Sigma_c \bar{D}^*) \ll r(X(3872))$$
:

in QM r
$$\approx 1/\sqrt{2\mu_{\rm red}\Delta E}$$

$$\Rightarrow r(X(3872)) \approx 4.4 \text{ fm} \text{ v. large, } \pi\text{-s dominate?}$$

$$r(\Sigma_c \bar{D}^*) \approx 1.2 \text{ fm}$$

at 1.2 fm the two hadrons overlap a bit

relative importance of π -s?

how does it work in b analogues?

Photoproduction of exotic baryon resonances

MK & J. Rosner, arXiv:1508.01496 Q. Wang, X. H. Liu and Q. Zhao, arXiv:1508.00339 V. Kubarovsky and M. B. Voloshin, arXiv:1508.00888

LHCb: new exotic resonances in $J/\psi p$ channel:

⇒ excellent candidates for photoproduction

• estimate $\sigma(\gamma p \to P_c \to J/\psi p)$ from vector dominance:

- $E_{\gamma} = 10 \; \text{GeV} \; \Rightarrow \; \text{CLAS12 \& GlueX @JLab \& } \ldots$
- ullet $\sigma\sim$ 50 nb $\gg\sigma_{
 m diffractive}\sim 1$ nb

Cross section for resonant photoproduction $\gamma p \to J/\psi p \to P_c(4450) \to J/\psi p$, assuming $B_{\rm out}=0.1$, plotted as function of the incident photon energy E_γ . The vertical dotted lines indicate the width of the $P_c(4450)$ resonance.

SLAC and Cornell, 1975:

$$\sigma(\gamma p \rightarrow J/\psi p) < 1 \text{ nb for } 10 < E_{\gamma} < 13$$

Why P_c -s not seen in these data ?

- a) smearing by photon energy spread
- b) mostly forward scattering data
- c) small branching fraction?

bottomonium analogue: $\Sigma_b B^*$ molecule at 11.14 GeV

$$E_{\gamma}=$$
 65.66 GeV, $\sigma\sim 1~{
m nb}~\gg~\sigma_{
m diffractive}\sim 50~{
m pb}$

detailed analysis needed to determine if π exchange suffices to bind two hadrons in each of these channels, and in corresponding QQ' channels. but

- relevant π -hadron couplings yet unknown
- exchanges other than π , e.g. must have short-distance repulsion to stabilize the potential
- possible contributions beyond S-waves
 c.f. D-wave in deuteron

⇒ too early to calculate the binding in most cases

Exotic resonances due to η exchange

arXiv:1106.00565

- Mesons w/o u and d light quarks, e.g. D_s :
- ullet cannot exchange π
- but under suitable circumstances can bind as a result of η exchange.
- \Rightarrow exotic $D_s^{(*)} \bar{D}_s^{(*)}$ ($c\bar{s}\bar{c}s$) mesons $\to J/\psi \phi$ in $B \to XK \to J/\psi \phi K$

exotic baryons due to η exchange:

if η exchange generates $D_s \bar{D}_s^*$ resonances then analogous baryon-meson resonances should exist

- a heavy baryon and a heavy meson
- at least one w/o light quarks
- \Rightarrow exotic $\Lambda_c \, \bar{D}_s^* \, (cud \, \bar{c}s)$ baryon $\to J/\psi \, \Lambda$ in e.g. $\Lambda_b \to P_{\bar{c}cs} \, \pi^+\pi^- \to J/\psi \, \Lambda \, \pi^+\pi^-$ a narrow $J/\psi \, \Lambda$ resonance $P_{\bar{c}cs}$ near 4400 MeV

Table 1: Possible S-wave resonances with two D_s mesons below 5 GeV.

States (J^P)	M	$M-M(J\!/\!\psi)$	Binding	Allowed
	(MeV)	$-M(\phi)$	by η ?	J^P
$D_s^+(0^-) D_s^-(0^-)$	3936.6	-179.8	No	-
$D_s^+(0^-) D_s^{*-}(1^-)$	4080.4	-36.0	Yes	1 ⁺
$D_s^{*+}(1^-) D_s^{*-}(1^-)$	4224.2	107.8	Yes	$0^+, 2^{+a}$
$D_s^+(0^-) \ D_{s0}^{*-}(2317)(0^+)$	4286.0	169.6	Yes	0-
$D_s^+(0^-) D_{s1}^-(2460)(1^+)$	4427.8	311.4	No^b	$[1^{-}]^{b}$
$D_s^{*+}(1^-) D_{s0}^{*-}(2317)(0^+)$	4429.8	313.4	No^b	$[1^{-}]^{b}$
$D_s^+(0^-) D_{s1}^-(2536)(1^+)$	4503.4	387.0	No	_
$D_s^+(0^-) \ D_{s2}^{*-}(2573)(2^+)$	4540.2	423.8	Yes	2^{-}
$D_s^{*+}(1^-) D_{s1}^-(2460)(1^+)$	4571.6	455.2	Yes	$0^-, 1^-, 2^-$
$D_{s0}^{*+}(2317)(0^{+}) D_{s0}^{*-}(2317)(0^{+})$	4635.4	519.0	No	_
$D_s^{*+}(1^-) D_{s1}^-(2536)(1^+)$	4647.2	530.8	Yes	$0^-, 1^-, 2^-$
$D_s^{*+}(1^-) D_{s2}^{*-}(2573)(2^+)$	4684.0	567.6	Yes	$1^-, 2^-, 3^-$
$D_{s0}^{*+}(2317)(0^{+}) D_{s1}^{-}(2460)(1^{+})$	4777.2	660.8	Yes	1^{+}
$D_{s0}^{*+}(2317)(0^{+}) D_{s1}^{-}(2536)(1^{+})$	4852.8^{c}	736.4	Yes	1+
$D_{s0}^{*+}(2317)(0^{+}) D_{s2}^{*-}(2573)(2^{+})$	4889.6^{c}	773.2	No	_
$D_{s1}^{+}(2460)(1^{+})D_{s1}^{-}(2460)(1^{+})$	4919.0^{c}	802.6	Yes	$0^+, 2^{+a}$
$D_{s1}^{+}(2460)(1^{+})D_{s1}^{-}(2536)(1^{+})$	4994.6^{c}	878.2	Yes	$0^+, 1^+, 2^+$

 $^{^{}a}$ $J^{P} = 1^{+}$ forbidden by symmetry.

 $[^]b$ Proximity of these two channels may lead to binding. See text.

^c Cannot be produced in $B \to KX$ because of kinematic mass limit.

Thresholds involving two D_s mesons

$$ar p p o (\Sigma_c ar \Sigma_c)$$

10-30 MeV below threshold @4908 MeV

and

$$ar{p}p o (\Sigma_c ar{\Lambda}_c)$$

10-30 MeV below threshold @4740 MeV

possibly accessible at PANDA

$$\Sigma_b^+ \Sigma_b^-$$
 dibaryon:

$$\Sigma_b^+ \Sigma_b^-$$
 vs. $ar{B}B^*$: $m_{\Sigma_b} > m_B$, $I=1$ vs. $I=rac{1}{2}
ightarrow$ stronger binding via π

 \Rightarrow deuteron-like J=1, I=0 bound state, "beautron" extra \sim 3 MeV binding from EM interaction

EXP signature: $\to \Lambda_b \Lambda_b \pi^+ \pi^ \Gamma(\Sigma_b) \sim 5 \div 10$ MeV, so might be visible should be seen in lattice QCD also $\Sigma_c^+ \Sigma_c^-$, etc. doubly heavy baryons QQq:

ccq, bcq, bbq, q = u, d

must exist, but have never been seen

fascinating challenge for EXP & TH

LHCb sees thousands of B_c -s \Longrightarrow should see bcq, ccq, etc.

QQq baryons are the simplest baryons:

when $m_Q \to \infty$, QQ form a static $\overline{3}_c$ diquark

so QQq baryon $\sim ar Qq$ meson

e.g. form factors: $F_{QQq}(q^2) = F_{\bar{Q}q}(q^2)$

corrections:
$$f\left(\frac{\Lambda_{QCD}}{m_Q}\right)$$
, calculable in QCD

hydrogen atom of baryon physics!

B_c production in LHCb: gg fusion

v. hard to compute reliably from first principles, but...

 Ξ_{bc} production: same diagram,

but b needs to pick up c, instead of $c: \mathbf{3}_c \mathbf{3}_c$ vs. $\mathbf{3}_c \mathbf{3}_c$

$$\implies \sigma(pp \to \Xi_{bc} + X) \sim \sigma(pp \to B_c + X)$$

LHCb is making a lot of B_c -s

 \implies LHCb is making a lot of (QQq) baryons !!!

 Ξ_{cc} is the lightest doubly-heavy baryon

is it LHCb's best bet for (QQq)?

$$\sigma(ar{c}c\,ar{c}c)\gg\sigma(ar{b}b\,ar{c}c)\gg\sigma(ar{b}b,ar{b}b)$$

but
$$\tau(b) \sim 7\tau(c)$$
 (Cabibbo),

e.g.
$$\tau(\Lambda_b) \approx 1.4 \times 10^{-12}$$
 sec.
vs. $\tau(\Lambda_c) \approx 0.2 \times 10^{-12}$ sec.

verified by detailed lifetime calculation

with sufficient E_{CM} may study double heavy flavor production

$$e^+e^-
ightarrow bar{b}car{c}+X$$
 , $e^+e^-
ightarrow bar{b}bar{b}+X$

 \Rightarrow a precondition for producing doubly heavy B_c , B_c^* , and doubly heavy $\Xi_{bc} = bcq$, and $\Xi_{bb} = bbq$, q = u, d.

must be able to see the (known) B_c state if one expects to be able to detect Ξ_{bc}

same diagram for B_c and Ξ_{bc} :

estimate $\sigma(e^+e^- \rightarrow \gamma B_c^+ B_c^- + X)$

 ~ 1.7 fb @90 GeV, 0.24 fb @250 GeV

masses of doubly-heavy baryons:
use same toolbox that predicted
b baryon masses.

doubly heavy baryons: masses and lifetimes

our mass predictions (in MeV) for lowest-lying baryons with two heavy quarks. States without a star have J=1/2; states with a star are their J=3/2 hyperfine partners. The quark q can be either u or d. The square or curved brackets around cq denote coupling to spin 0 or 1.

State	Quark content	M(J=1/2)	M(J=3/2)
$\Xi_{cc}^{(*)}$	ccq	3627 ± 12	3690 ± 12
$\Xi_{bc}^{(*)}$	b[cq]	6914 ± 13	6969 ± 14
Ξ_{bc}'	b(cq)	6933 ± 12	_
$\Xi_{bb}^{(*)}$	bbq	10162 ± 12	10184 ± 12

summary of lifetime predictions for baryons containing two heavy quarks. Values given are in fs.

Baryon	This work	[27]	[51]	[70]	[71]
$\Xi_{cc}^{++} = ccu$	185	430 ± 100	460 ± 50	500	~ 200
$\Xi_{cc}^+ = ccd$	53	120 ± 100	160 ± 50	150	~ 100
$\Xi_{bc}^+ = bcu$	244	330 ± 80	300 ± 30	200	_
$\Xi_{bc}^0 = bcd$	93	280 ± 70	270 ± 30	150	_
$\Xi_{bb}^0 = bbu$	370	_	790 ± 20	_	_
$\Xi_{bb}^{-} = bbd$	370	_	800 ± 20	_	_

interesting thresholds for heavy flavor production in e^+e^-

Final state	Threshold		
	(MeV)		
$Bar{B}$	10559		
$Bar{B}^*$	10605		
$B^*ar{B}^*$	10650		
$B_s \bar{B}_s$	10734		
$B_s\bar{B}_s^*$	10782		
$B_s^*\bar{B}_s^*$	10831		
$B_{s0}\bar{B}_{s}^{*}$	$11132 – 11193^a$		
$\Lambda_b ar{\Lambda}_b$	11239		
$B_c \bar{B}_c$	12551		
$B_c \bar{B}_c^*$	$12619 – 12635^b$		
$B_c^* \bar{B}_c^*$	$12687 – 12719^b$		
$\Xi_{bc}\bar{\Xi}_{bc}$	$13842 – 13890^c$		
$\Xi_{bb}\bar\Xi_{bb}$	$20300 – 20348^c$		

^aanalogue of the very narrow $D_{s0}(2317)$

 $[^]b$ With estimated B_c^* B_c splitting 68–84 MeV

 $[^]c$ estimate, MK&Rosner (2014)

Likely decay modes of QQq baryons

•
$$\Xi_{cc}^{++} = ccu$$

$$\Xi_{cc}^{++} \to (csu) W^+ \to (csu) (\pi^+, \rho^+, a_1^+)$$
 e.g.
 $\Xi_{cc}^{++} \to 3\pi^+ \Xi^-$ (missed by CDF trigger)
 $\Xi_{cc}^{++} \to \Lambda_c K^- 2\pi^+$

lifetime: each c quark can decay independently

$$\Gamma(\Xi_{cc}^{++}) = 3.56 \times 10^{-12} \text{ GeV}$$

 $\tau(\Xi_{cc}^{++}) = 185 \text{ fs}$

•
$$\Xi_{cc}^{+} = ccd$$

In addition to $c \to sud$, have $cd \to su$

$$\implies \tau(\Xi_{cc}^+) = 50 \div 100 \text{ fs}$$

•
$$\Xi_{bc}^+ = bcu$$

$$b \to cdu$$
 and $c \to sud$

e.g.
$$\Xi_{bc} \to J/\psi \Xi_c$$

$$\tau(\Xi_{bc}^+) \approx 240 \text{ fs}$$

•
$$\Xi_{bc}^0 = bcd$$

$$\tau(\Xi_c^+) = (4.42 \pm 0.26) \times 10^{-13} \text{ s}$$

$$\tau(\Xi_c^0) = (1.12^{+0.13}_{-0.10}) \times 10^{-13} \text{ s}$$

$$\Longrightarrow \tau(\Xi_{bc}^0) = 93 \text{ fs}$$

e.g.
$$\Xi_{bc}^0 \to j/\psi \, \Xi^0$$
 or $\Xi_{bc}^0 \to J/\psi \, \Xi^- \pi^+$

the difference due to $cd \rightarrow su$

•
$$\Xi_{bb} = bbq$$

 $bu \to cd$ possible for Ξ_{bb}^0 , but $\tau(\Xi_b^0)$ not much different from $\tau(\Xi_b^-)$ so treat Ξ_{bb}^0 and Ξ_{bb}^- generically as Ξ_{bb}

$$\implies \tau(\Xi_{bb}) \approx 376 \text{ fs}$$

rare but spectacular decay mode:

$$(bbq) \rightarrow (\bar{c}cs) (\bar{c}cs)q \rightarrow J/\psi J\psi \Xi$$

rough estimate of Ξ_{cc} production rate

assume suppression due to $s \to c$ indep. of spectators, i.e.

 Ξ_{cc} suppressed vs. Ξ_c as Ξ_c vs. Ξ :

$$\sigma(pp \to \Xi_{cc} + X) \sim \sigma(pp \to \Xi_c + X) \cdot \frac{\sigma(pp \to \Xi_c + X)}{\sigma(pp \to \Xi + X)}$$

perhaps can generalize to Ξ_{bc} and Ξ_{bb} production rate

$$\sigma(pp \to \Xi_{bc} + X) \sim \sigma(pp \to \Xi_{b} + X) \cdot \frac{\sigma(pp \to \Xi_{c} + X)}{\sigma(pp \to \Xi + X)}$$
or
$$\sigma(pp \to \Xi_{bc} + X) \sim \sigma(pp \to \Xi_{c} + X) \cdot \frac{\sigma(pp \to \Xi_{b} + X)}{\sigma(pp \to \Xi + X)}$$

and

$$\sigma(pp \to \Xi_{bb} + X) \sim \sigma(pp \to \Xi_b + X) \cdot \frac{\sigma(pp \to \Xi_b + X)}{\sigma(pp \to \Xi + X)}$$

a possible way to check if Ξ_{bc} and B_c

production rates are comparable:

compare analogous prod. rates of Ξ_c and D_s

(or Ξ_b and B_s) in the same setup,

and large enough E_{CM}

be it e^+e^- , $\bar{p}p$ or pp

gaps left by PEP, PETRA, TRISTAN and LEP

Integrated luminosity from past low energy e^+e^- colliders at their nominal center-of-mass energies compared to the effective luminosity through radiative return from future e^+e^- colliders at $\sqrt{s}=90$ or 250 GeV

 $\sqrt{\hat{s}}$ (GeV)
Integrated luminosity from past low energy e^+e^- colliders at their nominal centerof-mass energies compared to the effective luminosity through radiative return from future e^+e^- colliders at $\sqrt{s}=90$ or 250 GeV

LEP

150

100

 10^{2}

PETRA

50

200

new rich heavy flavor QCD spectroscopy

- (a) bottomonium analogues of charmonium X, Y, Z states
- (b) new exotics doubly-heavy hadronic molecules meson-meson, baryon-meson, baryon-baryon the lightest one: LHCb "pentaquark" = $\Sigma_c \bar{D}^*$ ($\bar{c}cuud$)
- (c) doubly heavy QQq baryons
- (d) b analogues of $D_{s0}^*(2317)$ and $D_{s1}(2460)$: BK molecules or chiral partners of B_s , B_s^*

SUMMARY

- the new narrow exotic resonances are loosely bound states of $\bar{D}D^*$, \bar{D}^*D^* , \bar{B}^*B^* , $\Sigma_c\bar{D}^*$ predictions:
- $-\bar{D}^*D^*$ in I=0 and I=1 channels; I=1 seen!
- new isosinglet $\bar{B}B^*$ and \bar{B}^*B^* states below threshold; $\chi_1b(3P)$?
- heavy deuterons: $\Sigma_c D^*$: LHCb $P_c(4450) \Longrightarrow$ photoproduction $\Sigma_c B^*$, $\Sigma_b \bar{D}^*$, $\Sigma_b B^*$, $\Sigma_Q \bar{\Lambda}_{Q'}$, $\Sigma_Q^+ \Sigma_Q^-$, ... η -mediated: $D_s \bar{D}_s^*$, $\Lambda_c \bar{D}_s^*$, ...
- doubly & triply heavy baryons QQq, QQQ @pp & e^+e^-
- exciting new spectroscopy

Supplementary transparencies

nels. The vertical dotted lines indicate $B^*\overline{B}$ and $B^*\overline{B}^*$ thresholds.

$$J^P = 1^+$$
 for both $Z_b(10610)$ and $Z_b(10650)$

Zakopane June 20-28, 2013

Full Amplitude Analysis with Full Statistics

Parameter	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$
$f_{Z_b^{\mp}(10610)\pi^{\pm}}, \%$	$4.8 \pm 1.2^{+1.5}_{-0.3}$	$18.1 \pm 3.1^{+4.2}_{-0.3}$	$30.0 \pm 6.3^{+5.4}_{-7.1}$
$M(Z_b(10610)), \text{MeV}$	$10608.5 \pm 3.4^{+3.7}_{-1.4}$	$10608.1 \pm 1.2^{+1.5}_{-0.2}$	$10607.4 \pm 1.5^{+0.8}_{-0.2}$
$\Gamma(Z_b(10610)), \mathrm{MeV}$	$18.5 \pm 5.3^{+6.1}_{-2.3}$	$20.8 \pm 2.5^{+0.3}_{-2.1}$	$18.7 \pm 3.4^{+2.5}_{-1.3}$
$f_{Z_b^{\mp}(10650)\pi^{\pm}}, \%$	$0.87 \pm 0.32^{+0.16}_{-0.12}$	$4.05 \pm 1.2^{+0.95}_{-0.15}$	$13.3 \pm 3.6^{+2.6}_{-1.4}$
$M(Z_b(10650)), \text{MeV}$	$10656.7 \pm 5.0^{+1.1}_{-3.1}$	$10650.7 \pm 1.5^{+0.5}_{-0.2}$	$10651.2 \pm 1.0^{+0.4}_{-0.3}$
$\Gamma(Z_b(10650)), \text{MeV}$	$12.1_{-4.8-0.6}^{+11.3+2.7}$	$14.2 \pm 3.7^{+0.9}_{-0.4}$	$9.3 \pm 2.2^{+0.3}_{-0.5}$

 $J^P = 1^+$ for both Z_b is favored over 1^- , 2^- and 2^+ at more than 6σ A. Garmash et al., Phys. Rev. D 91 (2015) 072003

S.Eidelman, BINP p.15/40

 $f_{Z_b(10610)}$ much bigger for $\Upsilon(3S)$, which has a large spatial extent. $\Longrightarrow Z_b(10610)$ is a large object.

Neutral member of the I=1 multiplet also observed by Belle in Dalitz plot analysis

$\Upsilon(5S) \to \Upsilon(nS)\pi^0\pi^0$ decay

In this fit mass and width are fixed from the charged Z_b result.

fit result with Z_b

— fit result without Z_b

Simultaneous fit gives 6.3 σ for $Z_b(10610)^0$

discovery of isovector $Z_c(3900)$

- ⇒ several quantitative predictions, arXiv:1304.0345:
- two narrow $X_b(I=0)$ bottomonium-like resonances
- $\sim 23 \; {\rm MeV} \; {\rm below} \; Z_b(10610) \; {\rm and} \; Z_b(10650), \; {\rm i.e.}$
- \sim 20 MeV below $\bar{B}B^*$ and \bar{B}^*B^* thresholds
- I=0 narrow resonance very close to \bar{D}^*D^* threshold
- I=1 narrow resonance a bit above \bar{D}^*D^* threshold

did not have to wait long...

BESIII:

```
Z_c^+(4025), arXiv:1308.2760, \Gamma \approx 25 MeV
```

 $Z_c^+(4020)$, arXiv:1309.1896; $\Gamma \approx 8 \text{ MeV}$

caveat: some masses = peak positions, with interference \neq pole mass

Null result from CMS:

CMS-BPH-11-016

Search for a new bottomonium state decaying to $Y(1S)\pi^+\pi^-$ in pp collisions at $\sqrt{s}=8\,\text{TeV}$

The CMS Collaboration* Abstract

The results of a search for the bottomonium counterpart, denoted as X_b , of the exotic charmonium state X(3872) is presented. The analysis is based on a sample of pp collisions at $\sqrt{s}=8$ TeV collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of $20.7 \, \mathrm{fb^{-1}}$. The search looks for the exclusive decay channel $X_b \to Y(1S)\pi^+\pi^-$ followed by $Y(1S) \to \mu^+\mu^-$. No evidence for an X_b signal is observed. Upper limits are set at the 95% confidence level on the ratio of the inclusive production cross sections times the branching fractions to $Y(1S)\pi^+\pi^-$ of the X_b and the Y(2S). The upper limits on the ratio are in the range 0.9–5.4% for X_b masses between 10 and 11 GeV. These are the first upper limits on the production of a possible X_b at a hadron collider.

Pair production of narrow B_{sJ} states

$$e^+e^- \rightarrow B_{sJ} + X$$

may be used to look for b-quark analogues of the very narrow D_{sJ} states seen by BaBar, CLEO and Belle

e.g. $D_{s0}(2317)$, $J^P = 0^+$, likely chiral partner of D_s :

$$m[D_{s0}(2317)] - m[D_s] = 345 \text{ MeV} \approx m_q^{\text{const.}}$$

below DK threshold \Rightarrow very narrow, $\Gamma < 3.8$ MeV,

decay: $D_{s0}(2317) \rightarrow D_s^+ \pi^0$ through v. small isospin-violating $\eta - \pi^0$ mixing

detailed v. interesting predictions for b analogues \Rightarrow opportunity to test our understanding of χSB