

PONTIFICIA Universidad Católica De Chile

JUNO: Next Generation Reactor Neutrino Experiment

Yury Malyshkin on behalf of the JUNO collaboration

HEP2016, Valparaiso, January 9, 2016

Neutrino Flavor Mixing

3 flavor eigenstates: $|\nu_e\rangle, |\nu_{\mu}\rangle, |\nu_{\tau}\rangle$ 3 mass eigenstates: $|\nu_1\rangle, |\nu_2\rangle, |\nu_3\rangle$ They mix:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

The mixing matrix can be expressed as following:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} P_{\nu},$$

$$c_{ij} \equiv \cos \theta_{ij}, \ s_{ij} \equiv \sin \theta_{ij}$$

$$P_{\nu} = \text{Diag}\{e^{i\rho}e^{i\sigma}, 1\} - \text{Majorana phase matrix}$$

Yury Malyshkin

Transition probability

Neutrino mixing leads to oscillation between different flavors:

$$P_{\alpha \to \beta} = |\langle \nu_{\beta} | \nu_{\alpha}(t) \rangle|^{2} = \left| \sum_{i} U_{\alpha i}^{*} U_{\beta i} e^{-im_{i}^{2}L/2E} \right|^{2}$$

or

$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4 \sum_{i>j} \operatorname{Re}(U_{\alpha i}^* U_{\beta i} U_{\alpha i} U_{\beta j}^*) \sin^2(\frac{\Delta m_{ij}^2 L}{4E})$$

$$+2\sum_{i>j}\operatorname{Im}(U_{\alpha i}^{*}U_{\beta i}U_{\alpha i}U_{\beta j}^{*})\sin(\frac{\Delta m_{ij}^{2}L}{2E})$$

where $\Delta m_{ij}^2 \equiv m_i^2 - m_j^2$

Yury Malyshkin

Example: \overline{v}_{e} **Survival Probability**

Using the 'sin' and 'cos' parametrization electron anti-neutrino survival probability formula can be written as:

'Frequencies' of oscillations:

 $\Delta m_{21}^2 \equiv m_2^2 - m_1^2$ $\Delta m_{31}^2 \simeq \Delta m_{32}^2 \equiv m_3^2 - m_2^2$

'Amplitudes' of oscillations are driven by mixing angles θ_{12} and θ_{13}

Neutrino Oscillations Parameters

In the standard 3-flavor framework there 6 independent parameters:

Daramotor	Value		Uncortainty		
NH	ІН	Uncertainty			
$\sin^2 2\theta_{12}$	0.846		2.5%	<1%	
$\sin^2 2\theta_{13}$	0.084		6%		
$\theta_{_{23}}$	~45°		octant is unknown		
Δm^2_{21}	$7.54 \cdot 10^{-5} eV^2$		2.3%	<1%	
∆m² ₃₁	2.47·10 ⁻³ eV ²	$2.42 \cdot 10^{-3} eV^2$	2.5%, sign is unknown	sign	
δ	?	?	preference to ~270°		

Yury Malyshkin

JUNO Layout

- **Source:** 6+4 reactors (Yangjiang and Taishan NPP, under construction)
- Baseline: 53 km
- Detection channel: inverse β -decay $\bar{\nu}_e + p \rightarrow e^+ + n$
- **Target:** single volume 20-kt liquid scintillator
- Detection technique: system of photomultiplier tubes (PMTs) (17k 20" PMTs + 17-35k 3" PMTs)
- Overburden: 700 m

JUNO Location

Yury Malyshkin

Neutrino Detection

Reactor neutrinos will be detected, like in Daya Bay and other reactor antineutrino experiments, through the inverse beta-decay (IBD) reaction and subsequent neutron capture:

Then neutrino energy:

$$E_{\bar{\nu}_e} \cong E_{e^+} + E_n + \underbrace{(M_n - M_p) + m_{e^+}}_{\text{30-40 keV}} + \underbrace{(M_n - M_p) + m_{e^+}}_{\text{1.8 MeV}}$$

Goals

- Mass hierarchy (main goal) •
- <1% precision of •

normal hierarchy (NH) inverted hierarchy (IH) $m^2 \bigstar$ m^2 ν_2 $\Delta m_{\rm sol}^2$ ν_1 $\Delta m_{\rm atm}^2$ $\Delta m_{\rm atm}^2$ $\Delta m_{\rm sol}^2$ ν_1 ν_3 $\nu_{\mu} \ \nu_{\tau}$ ν_e

- Other aspects: •
 - Supernova neutrinos —
 - Diffused supernova neutrinos
 - Solar neutrinos
 - Atmospheric neutrinos
 - Geo-neutrinos
 - Proton decay $(p \rightarrow K^+ + \overline{v})$: — $\tau > 1.9 \times 10^{34} \text{ yr} (90\% \text{ C.L.})$

Method of resolving MH

$$P_{ee}(L/E) = 1 - P_{21} - P_{31} - P_{32}$$

$$P_{21} = \cos^4(\theta_{13}) \sin^2(2\theta_{12}) \sin^2(\Delta_{21})$$

$$P_{31} = \cos^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{31})$$

$$P_{32} = \sin^2(\theta_{12}) \sin^2(2\theta_{13}) \sin^2(\Delta_{32})$$
high 'frequency'
$$low 'frequency'$$

1

Fourier transformation:

$$FCT(\omega) = \int_{t_{min}}^{t_{max}} F(t) \cos(\omega t) dt$$

$$FST(\omega) = \int_{t_{min}}^{t_{max}} F(t) \sin(\omega t) dt$$

$$\omega = 2.54 \times \Delta m_{ij}^2 - \text{frequency}$$
$$t = L/E : [L/E_{max}, L/E_{min}]$$

Yury Malyshkin

Detector design

- Liquid scintillator central detector
 - Big mass (20 kt)
 - High purity (>20 m att. length)
 - High luminosity (1200 p.e/MeV)
- PMTs
 - 17k 20" + 17-35k 3" (optional)
 - High photo-cathode coverage (75-80%)
 - High detection efficiency (QE 35%)
- *µ* veto (0.0031 Hz/m²)
 - Top tracker (plastic scintillator)
 - Water Cherenkov with 2k PMTs

How to reach 3% energy resolution

Noise

 keep the noise as low as possible (clean materials and quiet PMTs)

Photon statistics

- high light yield scintillator
- high photocathode coverage
- high detection efficiency PMTs

Energy leakage

Non-uniformity

 keep detector as uniform is possible (spherical geometry)

JUNO – an ambitious project

	Daya Bay	BOREXINO	KamLAND	RENO-50	JUNO
Target Mass	20t	~300t	~1 kt	~18kt	~20kt
PE Collection	~160 PE/MeV	~500 PE/MeV	~250 PE/MeV	>1000 PE/MeV	~1200 PE/MeV
Photocathode Coverage	~12%	~34%	~34%	~67%	~80%
Energy Resolution	~7.5%/√E	~5%/√E	~6%/√E	3%/√E	3%/√E
Energy Calibration	~1.5%	~1%	~2%	?	<1%

Yury Malyshkin

Calibration: < 1% energy scale unc.

- Automated calibration unit (ACU) vertical scan
- Rope system off-center access
- Remotely operated under-liquidscintillator vehicles (ROV) – 4π coverage
- A pelletron system which can provide mono-energetic positron beams
- Guide tubes along the surface boundary effects
- A diffuse system that can introduce short-lived radioactive isotopes into the central detector.

PMT system (LPMT+SPMT)

Two subsystems:

Large PMTs (20") + Small PMTs (3")

SPMTs are in the gaps between LPMTs

LPMT and SPMT complement each other

Yury Malyshkin

Large PMTs

Major photo-cathode coverage (75-80%) – the most statistics

Requirements:

- quantum efficiency 30% @ 420 nm, 35% @ 390 nm
- Low noise
- Several ns time characteristics

Two options:

- 1. Micro-channel plate (MCP) PMT – a new 4π design
- 2. New Hamamatsu SBA high QE PMTs

Small PMTs

Advantages:

- Faster time response (< 1 ns)
- Less noisy
- Higher QExCE
- Cheaper than large PMTs

Complementary Roles by sPMTs and LPMTS

Improvements in comparison with only LPMT system:

- Better muon reconstruction in the central detector
- Increase of dynamic range
- Avoid high rate pile-ups in case of a near supernova
- No negative effects on the main LPMT system

Selection cuts

Allow to suppress backgrounds rejecting only a small fraction of the signal:

Selection	IBD efficiency	IBD	Geo- νs	Accidental	⁹ Li/ ⁸ He	Fast n	(α, n)
-	-	83	1.5	$\sim 5.7 \times 10^4$	84	-	-
Fiducial volume	91.8%	76	1.4		77	0.1	0.05
Energy cut	97.8%			410			
Time cut	99.1%	73	1.3		71		
Vertex cut	98.7%]		1.1			
Muon veto	83%	60	1.1	0.9	1.6		
Combined	73%	60			3.8	-	-

Synergy with other experiments

- Atmospheric (INO, PINGU, Hyper-K) and accelerator experiments (NOvA, LBNF/DUNE) all utilize the matter effect to determine the neutrino mass hierarchy.
- JUNO uses a completely different method, from the frequency difference between Δm_{32}^2 and Δm_{31}^2 through precision measurement of the oscillation frequency.
- The JUNO measurement is independent of θ_{23} , δ_{CP} and the matter effect.

Synergy with other experiments

• Precision measurement of oscillation parameters

- First experiment to simultaneously observe "solar" and "atmospheric" oscillations
- First experiment to observe more than two cycles of neutrino oscillations
- Complementary to long-baseline accelerator program
- Probing the unitarity of U_{PMNS} to sub-percent level.

Yury Malyshkin

Supernova neutrinos

- Large amount of events: ٠ ~10⁴ @ 10 kpc
- Short time: ~10 seconds
- Separate detection of v_e , v_e and $(v_u, v_\tau, v_u, v_\tau)$

Channel	Type	Events f	Events for different $\langle E_{\nu} \rangle$ values				
Channel	туре	$12 { m MeV}$	$14 \mathrm{MeV}$	$16 { m MeV}$			
$\overline{\nu}_e + p \to e^+ + n$	$\mathbf{C}\mathbf{C}$	$4.3 imes 10^3$	$5.0 imes 10^3$	$5.7 imes 10^3$			
$\nu + p \rightarrow \nu + p$	NC	$6.0 imes10^2$	$1.2 imes 10^3$	$2.0 imes10^3$			
$\nu + e \rightarrow \nu + e$	NC	$3.6 imes10^2$	$3.6 imes10^2$	$3.6 imes10^2$			
$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes10^2$	$3.2 imes10^2$	$5.2 imes 10^2$			
$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$4.7 imes 10^1$	$9.4 imes10^1$	$1.6 imes 10^2$			
$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes 10^1$	1.1×10^2	$1.6 imes 10^2$			

Physical outcomes:

- ν mass: < 0.83±0.24 eV • at 95% CL [arXiv:1412.7418]
- Locating the SN: ~9° •
- Pre-SN v (> 1 day)
- SN nucleosynthesis via *v*_x spectra
- Collective v oscillation ٠
- Mass hierarchy •

Geoneutrinos

- Current results
 - KamLAND: 30±7 TNU [*PRD 88 (2013) 033001*]
 - Borexino: 38.8±12.2 TNU [*PLB 722 (2013) 295*] (Statistics dominant)
- Desire to reach an error of 3 TNU
- JUNO: x20 statistics
 - Huge reactor neutrino backgrounds
 - Need accurate reactor spectra

[V. Strati et al., Progress in Earth and Planetary Science 2, 1-7, (2015)]

Source	Events/year
Geoneutrinos	408 ± 60
U chain	311 ± 55
Th chain	92 ± 37
Reactors	16100 ± 900
Fast neutrons	3.65 ± 3.65
⁹ Li - ⁸ He	657 ± 130
$^{13}\mathrm{C}(lpha,n)^{16}\mathrm{O}$	18.2 ± 9.1
Accidental coincidences	401 ± 4

[arXiv:1510.01523]

Solar neutrinos

- Detection of solar neutrinos of all flavors through electron scattering
- Low level of intrinsic background is required
- Better understanding solar model:
 - Metallicity (discrimination of high and low Z version of the Solar Model)
 - ⁷Be and ⁸Be spectra

Source	Rate [cpd/1kt]
рр	1337
^{7}Be [line 0.384 MeV]	19
$^{7}\text{Be} [\text{line } 0.862 \text{ MeV}]$	475
рер	28
^{8}B	4.5
¹³ N	25
¹⁵ O	28
$^{17}\mathrm{F}$	0.7

Collaboration

Yury Malyshkin

Schedule

- **2013** Funding approved
- 2014 Collaboration officially formed

- now
 2015-2017 Civil construction
 2016-2017 Detector component production
 2016-2019 PMT production
 2018-2019 – Detector assembly and installation
 - **2020** Filling
 - **2020** Start of data taking

Summary

Detector of new generation

- Single volume 20-kt liquid scintillator
- High transparency: 20 m attenuation length
- High luminosity: 1200 p.e./MeV
- 3% energy resolution
- < 1% energy scale uncertainty</p>

Rich physics program:

- Resolving mass hierarchy
- < 1% precision measurements of $\sin^2 \theta_{12}$, Δm_{ee}^2 and Δm_{21}^2
- SN, solar, atmospheric, geo-neutrinos and other physics
 Start of data taking 2020

