

Measurements of single and multi-boson production with the ATLAS detector Roberto Ferrari

6th International Workshop on H.E.P. in the LHC Era

Valparaiso, 8 Jan. 2016

Topics

Measurements of:

- 1. single real W/Z
- 2. Drell-Yan
- 3. Diboson
- 4. VBF/VBS
- 5. Triboson

Physics Motivations:

a) probe predictions, improve parameter bounds & modelling for SMb) constrain PDF

c) understand bkg for many (Higgs, BSM, ...) analyses

d) search/constrain new physics (anomalous couplings)

crucial interplay: precise measurements ↔ good modelling

Reference Guides

1) Measurement of W and Z Boson Production Cross Sections in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector [ATLAS-CONF-2015-039]

2) Measurement of the Production Cross Sections of a Z Boson in Association with Jets in collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector [ATLAS-CONF-2015-041]

3) Measurement of the transverse momentum and Φ_n^* distributions of Drell-Yan lepton pairs in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector [ArXiv:1512.02192, submitted on 7 Dec 2015]

4) Measurement of the ZZ Production Cross Section in pp Collisions at $\sqrt{s} = 13$ TeV with the ATLAS Detector [ArXiv:1512.05314, submitted on 16 Dec 2015]

5) Measurements of four-lepton production in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector [Phys. Lett. B 753, 10 February 2016, p. 552-572]

6) Measurement of the W⁺W⁺ production cross section in proton-proton collisions at √s = 8 TeV with the ATLAS detector [ATLAS-CONF-2014-033]

7) Measurement of the WW+WZ cross section and limits on anomalous triple gauge couplings using final states with one lepton, missing transverse momentum, and two jets with the ATLAS detector at $\int s = 7$ TeV [JHEP 01(2015)049]

8) Measurement of the electroweak production of dijets in association with a Z-boson and distributions sensitive to vector boson fusion in proton-proton collisions at $\sqrt{s} = 8$ TeV using the ATLAS detector [JHEP 04(2014)031]

9) Evidence for Electroweak Production of $W^{\pm}W^{\pm}jj$ in pp Collisions at $\sqrt{s} = 8$ TeV with the ATLAS Detector [Phys. Rev. Lett. 113, 141803 (2014)]

10) Evidence of Wyy production in pp collisions at $\sqrt{s} = 8$ TeV and limits on anomalous quartic gauge couplings with the ATLAS detector [Phys. Rev. Lett. 115, 031802 (2015)]

Some Ingredients

Cross Section Estimation

Anomalous Couplings

anomalous Triple Gauge Couplings (aTGC.s): dibosons, VBF anomalous Quartic Gauge Couplings (aQGC.s): tribosons, VBS

Modelling

[The MC Generator Zoo] Large efforts on theory side to provide the most appropriate modelling ... almost each analysis uses a different set of generators.

Low P_{τ} (multiple soft-gluon radiation):

resummation up to NNLL (RESBOS, w/ 2 different nonperturbative parameterization to perform the resummation)

parton shower (PS) techniques (PYTHIA, HERWIG)

ME+PS with ME $O(a_s)$ (MC@NLO, POWHEG)

High P_{T} (hard-gluon emission):

fixed-order calculations up to $O(a_s^2)$ (FEWZ, DYNNLO)

multi-leg tree-level ME+PS (SHERPA, ALPGEN)

Not-exhaustive List!!

PDF.s : CT10, CTEQ6L1, NNPDF3.0, ...

8 January 2016

2015 LHC Performance

Peak luminosity (before final calibration): Run1: 7.6×10^{33} cm⁻² s⁻¹ Run2: 5.2×10^{33} cm⁻² s⁻¹

2015 ATLAS Performance

Data:	
7 TeV	L = 4.5 fb ⁻¹
8 TeV	L = 20.3 fb ⁻¹
13 TeV	L = 3.2 fb ⁻¹

Subdatastar	Number of Channels	Approximate Operational Fraction
Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	92 M	99.0%
SCT Silicon Strips	6.3 M	98.9%
TRT Transition Radiation Tracker	350 k	97.3%
LAr EM Calorimeter	170 k	100%
Tile calorimeter	4900	99.2%
Hadronic endcap LAr calorimeter	5600	99.6%
Forward LAr calorimeter	3500	99.8%
LVL1 Calo trigger	7160	100%
LVL1 Muon RPC trigger	370 k	98.7%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	357 k	99.8%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Chambers	370 k	97.1%
TGC Endcap Muon Chambers	320 k	99.8%

Single Boson Production @ 13 TeV

@13TeV - W/Z production

W → ev, $\mu v (m_{\tau} > 50 \text{ GeV})$ Z → e+e-, μ + μ - (66 < m_{\parallel} < 116 GeV) $P_{\tau}(I,v) > 25 \text{ GeV}$

Signal modelling: Powheg + Pythia 8 (normalised to NNLO predictions) \rightarrow Cross-section ratios provide (partial) uncertainty cancellation \rightarrow Ratio R_{w/z} may constraint strange-quark distribution \rightarrow Ratio R_{w+/w-} sensitive to u-d valence quark distribution

$$\sigma_{tot}(W^{*}) = [10960 \pm 20(stat) \pm 440(stat) \pm 990(lumi)] pb$$

 $\sigma_{tot}(W^{-}) = [8380 \pm 20(stat) \pm 350(stat) \pm 750(lumi)] pb$
 $\sigma_{tot}(Z) = [1869 \pm 7(stat) \pm 42(stat) \pm 168(lumi)] pb$

8 January 2016

@13TeV - W/Z cross sections

@13TeV - W/Z cross section ratios

→ General agreement with different PDF-set predictions → $R_{w+/w-}$ as PDF probe (mostly sensitive u-d valence quark PDF.s) precision now at ~3% level → discrimination power threshold ~2%

@13TeV - Z+jets

$Z \rightarrow e+e-, \mu+\mu-$

Jets defined by anti- k_{τ} , R=0.4: P_{τ} > 30 GeV, |y| < 2.5

Important test of perturbative QCD Ok for both Sherpa and MadGraph predictions

8 January 2016

Drell-Yan Production @ 8 TeV

 $P_{T,Z}$ reconstruction is affected by energy and momentum measurement uncertainty to minimize systematics $\rightarrow \Phi^*$ as alternative probe of $P_{T,Z}$ Φ^* provides a measure of the angular correlation between the leptons

@8TeV - $P_{\tau} \& \Phi_{n}^{*}$ Distributions for DY Pairs

predictions ok for ~low values of Φ_*

ResBos

ArXiv:1512.02192

@8TeV - $P_{\tau} \& \Phi_{\eta}^*$ Distributions for DY Pairs

Parton Shower MC

for 5<P₁(II)<100, m(II)>46 GeV agreement <~10%

ArXiv:1512.02192

@8TeV -
$$P_{\tau} \& \Phi_{n}^{*}$$
 Distributions for DY Pairs

note: not yet sensitive to NLO EW corrections

Diboson Production @ 13 & 8 TeV

@13TeV - ZZ

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Collisions

@13TeV - ZZ Cross Section

41 channel: 2 OS-SF [e,μ] pairs P_T > 20GeV, 66 < m_{II} < 116 GeV

63 events in 3 channels, total exp. bkg.: $0.62^{+1.08}_{-0.11}$

Measurement		$O(\alpha_{\rm S}^2)$ prediction	
$\sigma^{\rm fid}_{ZZ \to e^+e^-e^+e^-}$	8.4 $^{+2.4}_{-2.0}$ (stat.) $^{+0.4}_{-0.2}$ (syst.) $^{+0.5}_{-0.3}$ (lumi.) fb	$6.9^{+0.2}_{-0.2}$ fb	
$\sigma^{\rm fid}_{ZZ \to e^+ e^- \mu^+ \mu^-}$	14.7 $^{+2.9}_{-2.5}$ (stat.) $^{+0.6}_{-0.4}$ (syst.) $^{+0.9}_{-0.6}$ (lumi.) fb	$13.6^{+0.4}_{-0.4} \mathrm{~fb}$	
$\sigma^{\rm fid}_{ZZ\to\mu^+\mu^-\mu^+\mu^-}$	$6.8^{+1.8}_{-1.5}$ (stat.) $^{+0.3}_{-0.3}$ (syst.) $^{+0.4}_{-0.3}$ (lumi.) fb	$6.9^{+0.2}_{-0.2}$ fb	
$\sigma^{\rm fid}_{ZZ \to \ell^+ \ell^- \ell'^+ \ell'^-}$	29.7 $^{+3.9}_{-3.6}$ (stat.) $^{+1.0}_{-0.8}$ (syst.) $^{+1.7}_{-1.3}$ (lumi.) fb	$27.4^{+0.9}_{-0.8}~{ m fb}$	
$\sigma_{ZZ}^{ m tot}$	16.7 $^{+2.2}_{-2.0}$ (stat.) $^{+0.9}_{-0.7}$ (syst.) $^{+1.0}_{-0.7}$ (lumi.) pb	15.6 ^{+0.4} _{-0.4} pb	

ArXiv:1512.05314

Cross-Section √s Dependence

@8TeV - 41 Cross Section

probe SM predictions over a large mass range: 80-1000 GeV
very small bkg (~5%)

Data

H→4I

aā→4l

gg→4l Backɑround

stat. + svst.

1000

m₄I[GeV]

2 OS, SF pairs of high-PT isolated leptons 50<m12<120 GeV, 12<m34<120 GeV

476 ev. [bkg 26.2 ± 3.6]

200

300 400

Phys. Lett. B 753 (2016) 552-572

overall good agreement w/ predictions NNLO QCD, NLO EW for qq/H→4l but only LO QCD gg→4l

10³

10²

10⊧

1

10⁻¹

80

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Events / 10 GeV

@8TeV - 41 Cross Section

 \rightarrow try to estimate NLO gg \rightarrow 4l contribution from data

estimation of signal strength $\mu_{qq} = \sigma(data)/\sigma(gg \rightarrow 4I; LO)$ for $m_{4I} > 180 \text{ GeV}$

 $\mu_{gg} = 2.4 \pm 1.0(stat.) \pm 0.5(syst.) \pm 0.8(theory)$

8 January 2016

Phys. Lett. B 753 (2016) 552-572

@8TeV - WW→lvlv Cross Section

- total and fiducial cross section measurements
- test of SM non-abelian structure
- sensitive to anomalous triple gauge couplings (aTGC)
- irreducible bkg to Higgs searches

Backgrounds:

- top, drell-yan. W+jets (data driven)
 other dibosons (MC based)
- hard criteria on $E_{\tau}^{\mbox{}^{miss}}$ and jet-veto against tt

ATLAS-CONF-2014-033

ATLAS-CONF-2014-033

8 January 2016

@8TeV - WW Cross Section

· individual channels compatible

 \cdot ~2 σ discrepancy wrt partial-NNLO predictions

 $\sigma_{WW}^{tot} = 71.4^{+1.2}_{-1.2}(stat) {}^{+5.0}_{-4.4}(syst) {}^{+2.2}_{-2.1}$ (lumi) pb

$$\sigma_{WW}^{predicted} = 58.7^{+3.0}_{-2.7} \text{ pb}$$

 \cdot compatible at ~1\sigma w/ full-NNLO predictions

@7TeV - WZ/WW→lvjj

- W/Z+jets: ~89% (data driven)

- multi-jets: ~5% (data driven)
- top: ~4% (MC)

Total bkg modeled w/ combined LH fit

JHEP 01(2015)049

a) one high P_{τ} , isolated lepton

b) E_{τ}^{miss} >30 GeV, M_{τ} >40 GeV

GeV

വ

Events /

Data/Fit

agreement w/ SM \rightarrow limits on aTGC couplings 28

8 January 2016

Vector Boson Fusion/Scattering @ 8 TeV

 $\sigma_{\rm EW} = 54.7 \pm 4.6 \,(\text{stat}) \,{}^{+9.8}_{-10.4} \,(\text{syst}) \,\pm 1.5 \,(\text{lumi}) \,\text{fb}.$

 $\sigma_{EW,Powheg} = 46.1 \pm 0.2 \,(\text{stat}) \pm 0.8 \,(\text{PDF}) \pm 0.5 \,(\text{model}) \text{fb}$

8 January 2016

BKG + EW Data

BKG Data 1.5

0.5

0.5

Background

constrained

unconstrained

500

2000

Background + EW Zj

JHEP 04(2014)031

3500

3000

m [GeV]

2500

@8TeV - ssWWjj VBS

Main bkg from tt (charge flip), WZ Main sys. uncertainty from bkg determination Combined signal over bkg only hypothesis · inclusive (EW+ strong): 4.5σ (exp. 3.4σ)

· VBS (EW only): 3.6σ (exp. 2.8σ)

Phys.Rev.Lett. 113, 141803 (2014)

Triboson Production @ 8 TeV

Limits on aTGCs (Summary)

Cross sections would be higher for aTGC

aTGC mostly affect high $\mathsf{P}_{_{\mathrm{T}}}$ regions

Parametrization of aTGC in a perturbative, model independent way Parameters ($\Delta \kappa_v, \Lambda_v, ...$) all 0 in SM

 \rightarrow no deviation from SM predictions found

A Search @ 13, 8 TeV

Fully Hadronic JJ Diboson Searches

- Modest excess at Run-1: 3.40 local / 2.50 global
- Analysis very similar to Run 1, with functional fit of the background
- No significant excess is observed however sensitivity not high enough for conclusive probe of the Run 1 excess

Run-1 Data Background model 1.5 TeV EGM W', c = 1

> 2.0 TeV EGM W', c = 1 2.5 TeV EGM W', c = 1 Significance (stat)

Significance (stat + syst)

WZ Selection

2.5

3

3.5 m_{ii} [TeV]

10

10

10

10-

Significance

ATLAS

is = 8 TeV, 20.3 fb

Events / 100 GeV

Standard Model Production Cross Section Measurements

Status: Nov 2015

Conclusions

Large (non-exhaustive) set of ATLAS results from the analysis of single and multi boson final states have been presented. In particular:

a) W, Z, Z+jets, ZZ cross sections at 13 TeV

b) D-Y, ZZ, WW, ZW, cross sections at 13 / 8 TeV, limits on aTGC.s

- c) electroweak production of Zjj, sensitive to vector boson fusion
- d) first evidence of vector boson scattering
- e) first measurement of triboson (Wyy) production, limits on aQGC

 \rightarrow Many results, no evidence for new physics, but significant input for improving SM theoretical modelling

 \rightarrow New, better results likely soon but ... systematics often already dominating [i.e. will improve but not as J(statistics)]

Thank for Your Attention [and Patience]

Backup

@8TeV - WZ→Illv Cross Section

- limits on WWZ aTGC not yet updated,

 \rightarrow 7 TeV results: Eur. Phys. J. C (2012) 72:2173

@7TeV - Wy/Zy Cross Sections

- $W_{Y}/Z_{Y} \rightarrow I_{VY}, II_{Y}, v_{VY}$
 - a) high $\mathsf{P}_{_{\mathsf{T}}}$, isolated $\gamma/leptons$
 - b) v \rightarrow high E_{τ}^{miss}
 - c) γ/l well separated
- Exclusive (Njet=0) region more sensitive to aTGC

Phys.Rev.D 87,112003 (2013)

Backgrounds:

- W+jets: 15-25% (data driven)
- Z+jets: ~10% (data driven)
- γ+jets: 5-10% (data driven)

- +t: <5% (MC)

- differences at high E_{t}^{γ}
- improve w/ NNLO corrections
 → new theoretical predictions

SM Cross Sections

Standard	d Model Production Cross S	Section Measurements	Status: Nov 2015	∫£ dt [fb ^{−1}]	Reference
рр	ATLAS Preliminary	¢	¢	8×10 ⁻⁸	Nucl. Phys. B, 486-548 (2014
Jets R=0.4	AILAS Tremminary	0.1 < p _T < 2 TeV	0	4.5	arXiv:1410.8857 [hep-ex]
Dijets R=0.4	Run 1,2 $\sqrt{s} = 7, 8, 13 \text{ TeV}$	0.3 < m _{jj} < 5 TeV		4.5	JHEP 05, 059 (2014)
۱۸/		0	q	0.035	PRD 85, 072004 (2012)
vv	¢		q	0.085	ATLAS-CONF-2015-039
Z		°_	9	0.035	PRD 85, 072004 (2012)
_	0			0.085	ATLAS-CONF-2015-039 Eur. Phys. J. C 74: 3109 (2)
tī	$\check{\Delta}$		<u>A</u>	20.3	Eur. Phys. J. C 74: 3109 (20
•				4.6	PRD 90, 112006 (2014)
L _{t-chan}	Δ			20.3	ATLAS-CONF-2014-007
14/14/	þ		0	4.6	PRD 87, 112001 (2013)
vvvv	A			20.3	ATLAS-CONF-2014-033
γγ	0			4.9	JHEP 01, 086 (2013)
۱۸/+	¢ _	Theory		2.0	PLB 716, 142-159 (2012)
ννι	Δ.			20.3	arXiv:1510.03752 [hep-ex]
W/7	o,			4.6	EPJC 72, 2173 (2012)
~~~	A	LHC $pp \gamma s = r lev$	4	13.0	ATLAS-CONF-2013-021
ZZ 🗌	0	Data		4.6	JHEP 03, 128 (2013)
t _{s-chan}		stat stat+syst		20.3	ATLAS-CONF-2015-047
Wγ	ò	LHC pp $\sqrt{s} = 8 \text{ TeV}$	•	4.6	PRD 87, 112003 (2013)
Zγ	\$	Data stat	0	4.6	PRD 87, 112003 (2013) arXiv:1407.1618 [hep-ph]
tŦW		stat+syst		20.3	arXiv:1509.05276 [hep-ex]
tī7		LHC pp $\sqrt{s} = 13 \text{ TeV}$		20.3	arXiv:1509.05276 [hep-ex]
tīγ	•	Data stat		4.6	arXiv:1502.00586 [hep-ex]
, Zjjеwк	Δ			20.3	JHEP 04, 031 (2014)
$H \rightarrow \gamma \gamma$				20.3	JHEP 09 112 (2014)
Wγγ				20.3	arXiv:1503.03243 [hep-ex]
V±W±јјеwк	- 			20.3	PRL 113, 141803 (2014)
10-	$^{-3}$ 10 ⁻² 10 ⁻¹ 1 10 ¹ 10 ²	$10^3  ext{ } 10^4  ext{ } 10^5  ext{ } 10^6  ext{ } 10^{11}  ext{ } 0^6$	.5 1 1.5 2		
		$\sigma$ [pb] d	ata/theory		

### Summary of Run-2 Total Cross Section Measurements



## Vector Boson Scattering

Confirm that Higgs Boson provides cancellation of divergences at HE Generic EFT framework: add all possible gauge-invariant boson couplings



## Vector Boson Scattering (2)

Parameterize BSM using higher dimensional operator



## the road to HL-LHC



goal: fully exploit the LHC potential