Searches for Extra Higgs Doublets in the ZZh Final State

Work in progress, in collaboration with: C. Gao, M. Luty, M. Mulhearn, N.N., Z. Wang

University of California Davis

6th International Workshop on High Energy Physics in the LHC Era Universidad Técnica Federico Santa María, Valparaíso, Chile January 9, 2016

伺 ト く ヨ ト く ヨ ト

Extended Higgs sector?

- New Physics in the Higgs sector?
- If there are additional Higgs boson there are two approaches:

Precision tests

They are universal and can probe very high masses. Disadvantage: We have a deviation but we don't know what it corresponds to.

• Direct searches

They give a lot more information, more stringent bounds. Disadvantage: inefficient for heavy Higgses.

Precision tests and direct searches are *complementary*.

周 🖌 🖌 🖉 🖌 🖉 🖌 🖉 🖂

Introduction Our analysys: ZZh Final State

LHC Run-I Bounds

Our search: ZZh final state

Benchmark

 $m_H=400~{
m GeV}, \ m_A=m_{H^\pm}=250~{
m GeV}$

Final states we considered so far:

h	Ζ	Ζ
bb	ll	$\ell\ell$
bb	$\ell\ell$	jj
bb	$\nu\nu$	$\ell\ell$
$\gamma\gamma$	$\ell\ell$	$\ell\ell$
$\gamma\gamma$	$\ell\ell$	jj
$\gamma\gamma$	$\nu\nu$	jj
$\gamma\gamma$	$\nu\nu$	$\ell\ell$
$\ell u \ell u$	$\ell \ell$	all
< □ < ₫	$\nu \nu$	▶a∥ ≣

$H \rightarrow ZA \rightarrow ZZh$ cross-section estimation

- We put LHC Run-I bounds together with contour lines for $\sigma(gg \rightarrow H \rightarrow ZZh)$ in the 2HDM type I.
- From here, the optimal cross-section in the allowed region is:

$$\sigma_{MAX}(gg
ightarrow H
ightarrow ZZh) pprox 0.43 ext{ pb}$$

Analysis

For the signal and background simulation we used MadGraph 5, PYTHIA and Delphes 3, for matrix element generation, hadronization/showering and detector simulation, respectively.

h	Ζ	Ζ	comments
bb	$\ell\ell$	ll	Clean, ideal for reconstruction
bb	$\ell\ell$	jj	Relatively large signal xsec but large background
bb	$\nu\nu$	ll	Overwhelmed by $t\bar{t}$ background
$\gamma\gamma$	$\ell\ell$	ll	Signal xsec too small
$\gamma\gamma$	$\ell\ell$	jj	Relatively clean at the cost of small signal xsec
$\gamma\gamma$	$\nu\nu$	jj	Hard to reconstruct
$\gamma\gamma$	$\nu\nu$	ll	Clean but very small cross section
$\ell \nu \ell \nu$	$\ell\ell$	all	Relatively clean after placing high $\not\!$

Table : Summary of the final states of ZZh studied so far.

ъ

伺 ト イヨト イヨト

Most sensitive channel: $ZZh \rightarrow IIIIb\bar{b}$

- Pre-selection:
 - 2 b-tagged jets.
 - 2 pairs of same flavor and oppositely charged leptons.
 - $p_T(l_1) > 20 \text{ GeV}, \ p_T(l_2) > 15 \text{ GeV}, \ p_T(l_3), p_T(l_4) > 10 \text{ GeV}.$

Optimized cuts

- $m_{b\bar{b}} \in [70, 160] \text{ GeV}$
- $\not\!\!\!E_T < 70$ GeV.
- $|m_{II} m_Z| < 20$ GeV.
- $|m_{llbb} m_A| < 50$ GeV.
- $|m_{IIIIbb} m_H| < 60 \text{ GeV}.$

#	0	1	2	3	4	5	6
Cuts	Initial	lllbb	m _{bb}	m_{II}	Ęτ	m _A	m _H
Signal	337	36.1	30.9	29.0	25.6	25.1	21.2
ttΖ	643	37.5	14.3	3.77	1.30	1.11	0.52
ZZbb	81.6	6.09	2.18	2.06	1.81	1.35	0.75
Total backgrounds	402	43.6	16.5	5.83	3.11	2.46	1.27

Table : Cut flows after each selection at the benchmark $m_H = 400$ GeV and $m_A = 250$ GeV, @14 TeV, 300 fb⁻¹

After the cuts the significance is

$$Z = \sqrt{2((s+b)(1 + \ln(1 + \frac{s}{b}) - s))} \approx 9.32\sigma$$
(1)

(8.74 σ without the the m_A and m_H cuts).

Summary: Most sensitive channels

Channel	14 TeV 300 fb ⁻¹			14 TeV 3000 fb ⁻¹		
	Sig Yields	Bkg Yields	Sign.	Sig Yields	Bkg Yields	Sign.
lllbb	27.3	3.11	9.2 σ	273	31.1	29 σ
$\ell\ell\ell\ell + \not\!\!\! E_T$	6.76	3.22	3.0 σ	67.6	32.2	9.5 σ
lljjbb	633	4.57×10^{4}	2.9σ	6330	4.57×10^{5}	9.3 σ
γγννℓℓ	2.01	0.225	2.5σ	2.25	20.1	7.9 σ
$\gamma \gamma \ell \ell j j$	1.80	0.694	1.7σ	18.0	6.94	5.3 σ

Table : Summary of the most sensitive channels of the $H \rightarrow ZA$, $A \rightarrow Zh$ cascade search.

For example, for $IIIIb\bar{b}$ we reach 3 σ (5 σ) significance at x fb⁻¹ (x fb⁻¹).

ゆ く き く き く

Our analysys: ZZh Final State

5σ cross-section and ATLAS projected bounds @14 TeV, 300 fb⁻¹

Our analysys: ZZh Final State

H Cascade Search - Mass Reach @14 TeV, 300 fb⁻¹

Summary and Conclusions

- We proposed the Higgs cascade search $H \rightarrow AZ$, $A \rightarrow Zh$, considering different final states.
- From the different final states considered, we found that $\ell\ell\ell\ell\ell bb$ performs the best; the four-lepton requirement provides a clean signal, and $h \rightarrow bb$ has a relatively large branching ratio.
- Considering the bounds from the LHC Run-I and projected bounds at 14 TeV, we found that for large tan β this search is competitive with future *H* direct searches.
- We show that this can be the most sensitive probe of new physics in a Type I 2HDM at large tan β .

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三 臣 ■ り へ ()

Thanks for your attention!

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

三日 のへの

Two Higgs Doublet Model (2HDM)

In the *Higgs basis*, where only one of the doublets gets a vacuum expectation value (VEV):

$$H_{1} = \begin{pmatrix} G^{\pm} \\ \frac{1}{\sqrt{2}} (\nu + \phi_{1}^{0} + iG^{0}) \end{pmatrix}, \quad H_{2} = \begin{pmatrix} H^{\pm} \\ \frac{1}{\sqrt{2}} (\phi_{2}^{0} + iA) \end{pmatrix}, \quad (2)$$

where $v^2 = v_1^2 + v_2^2$ and $\tan \beta \equiv v_2/v_1$. ϕ_1^0 and ϕ_1^0 mix to give two CP-even neutral Higgs bosons:

$$\begin{pmatrix} H\\h \end{pmatrix} = \begin{pmatrix} \cos(\beta - \alpha) & -\sin(\beta - \alpha)\\ \sin(\beta - \alpha) & \cos(\beta - \alpha) \end{pmatrix} \begin{pmatrix} \phi_1^0\\\phi_2^0 \end{pmatrix}.$$
 (3)

ゆ くち くち うち しょう しょう

Example of cut optimization

Table 1: SM predictions of the Higgs boson production cross sections and decay branching ratios and their uncertainties for $m_H = 125.36$ GeV, obtained by linear interpolations from those at 125.3 and 125.4 GeV from Ref. [11] except for the *tH* production cross section which is obtained from Refs. [23, 26]. The uncertainties of the cross sections are the sum in quadrature of the uncertainties resulting from variations of QCD scales, parton distribution functions and α_s . The uncertainty on the *tH* cross section is calculated following the procedure in Refs. [11, 23].

Production	Cross section [pb]		Decay channel	Branching ratio [%]
process	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	$H \rightarrow b\bar{b}$	57.1 ± 1.9
ggF	15.0 ± 1.6	19.2 ± 2.0	$H \to W W^*$	22.0 ± 0.9
VBF	1.22 ± 0.03	1.57 ± 0.04	$H \rightarrow gg$	8.53 ± 0.85
WH	0.573 ± 0.016	0.698 ± 0.018	$H \rightarrow \tau \tau$	6.26 ± 0.35
ZH	0.332 ± 0.013	0.412 ± 0.013	$H \rightarrow c \bar{c}$	2.88 ± 0.35
bbH	0.155 ± 0.021	0.202 ± 0.028	$H \rightarrow ZZ^*$	2.73 ± 0.11
ttH	0.086 ± 0.009	0.128 ± 0.014	$H \rightarrow \gamma \gamma$	0.228 ± 0.011
tH	0.012 ± 0.001	0.018 ± 0.001	$H \rightarrow Z\gamma$	0.157 ± 0.014
Total	17.4 ± 1.6	22.3 ± 2.0	$H \rightarrow \mu \mu$	0.022 ± 0.001

[Atlas: 1507.04548]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●