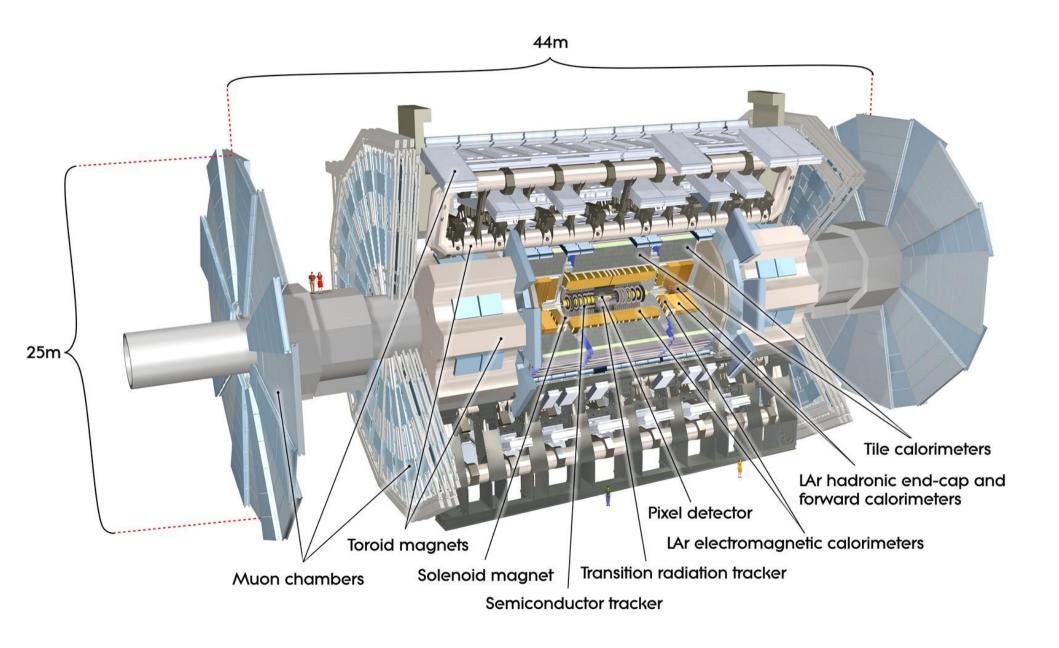

Run-2 ATLAS Trigger and Detector Performance

Frank Winklmeier

University of Oregon

on behalf of the ATLAS Collaboration

1ep2016


Valparaiso, Chile 8th January 2016

Content

- Detector and Trigger performance
 - Upgrades done during Long Shutdown 1 (LS1, Feb'13 Apr'15)
 - Detector Performance in 2015
 - Trigger Performance in 2015
 - Outlook for 2016
- Physics and Upgrade covered in
 - Wednesday
 - Hernan Wahlberg, First Atlas Results from Run2
 - Saturday
 - Giulio Aielli, ATLAS Upgrades for the Next Decades
 - + many other talks in parallel sessions

The ATLAS Detector

The ATLAS Detector

- Repairs and upgrades in all detectors during LS1
 - Prepare all detectors for 100 kHz readout rate (75 kHz in run-1)
 - Additional Pixel layer (IBL) and new beam pipe
 - Gas leak repairs for Transition Radiation Tracker (TRT)
 - Replacement of power supplies for LAr and Tile calorimeter

Toroid magnets

- Repair of broken front-end electronics in all systems
- Install remaining and new muon chambers

Muon chambers

25m

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

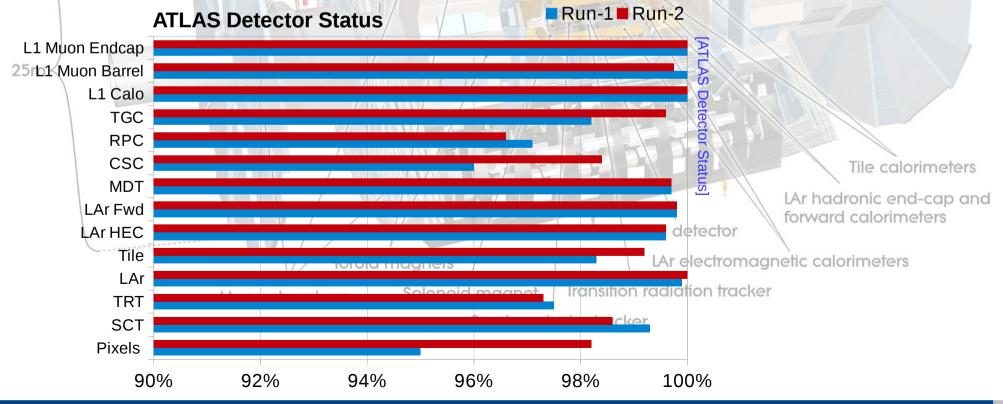
Semiconductor tracker

Solenoid magnet

Tile calorimeters

LAr hadronic end-cap and

forward calorimeters


LAr electromagnetic calorimeters

Pixel detector

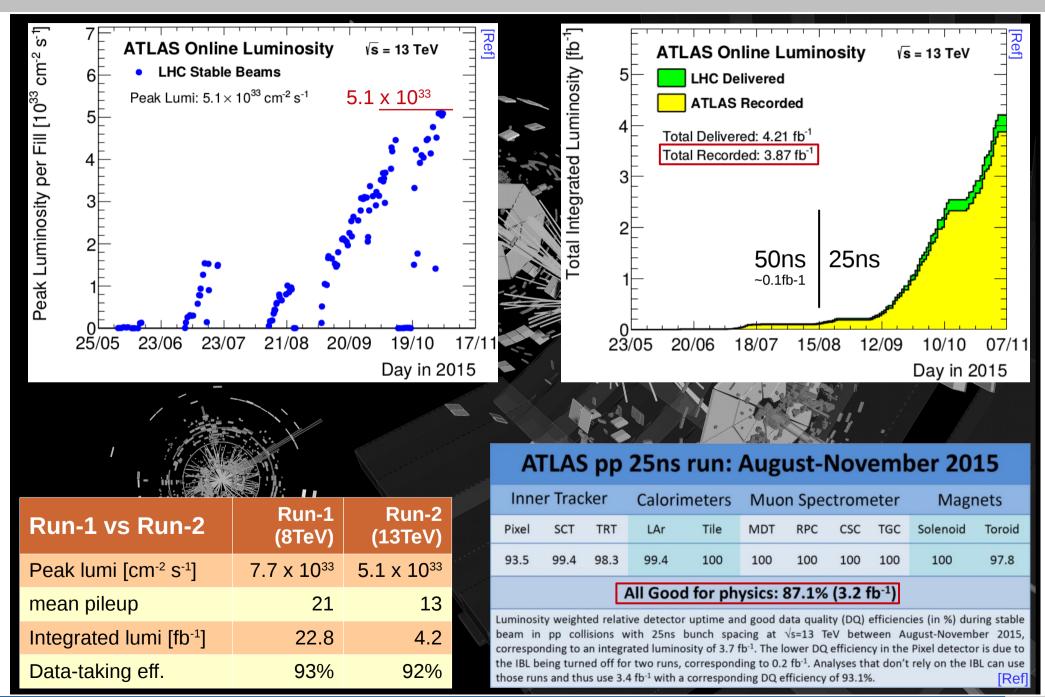
Transition radiation tracker

The ATLAS Detector

- Repairs and upgrades in all detectors during LS1
 - Prepare all detectors for 100 kHz readout rate (75 kHz in run-1)
 - Additional Pixel layer (IBL) and new beam pipe
 - Gas leak repairs for Transition Radiation Tracker (TRT)
 - Replacement of power supplies for LAr and Tile calorimeter
 - Repair of broken front-end electronics in all systems
 - Install remaining and new muon chambers
- Fraction of operational channels

A new era for proton-proton collisions

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayPublicResults


8.8 TeV di-jet event produced at 13 TeV

Run: 279685 Event: 690925592 2015-09-18 02:47:06 CEST

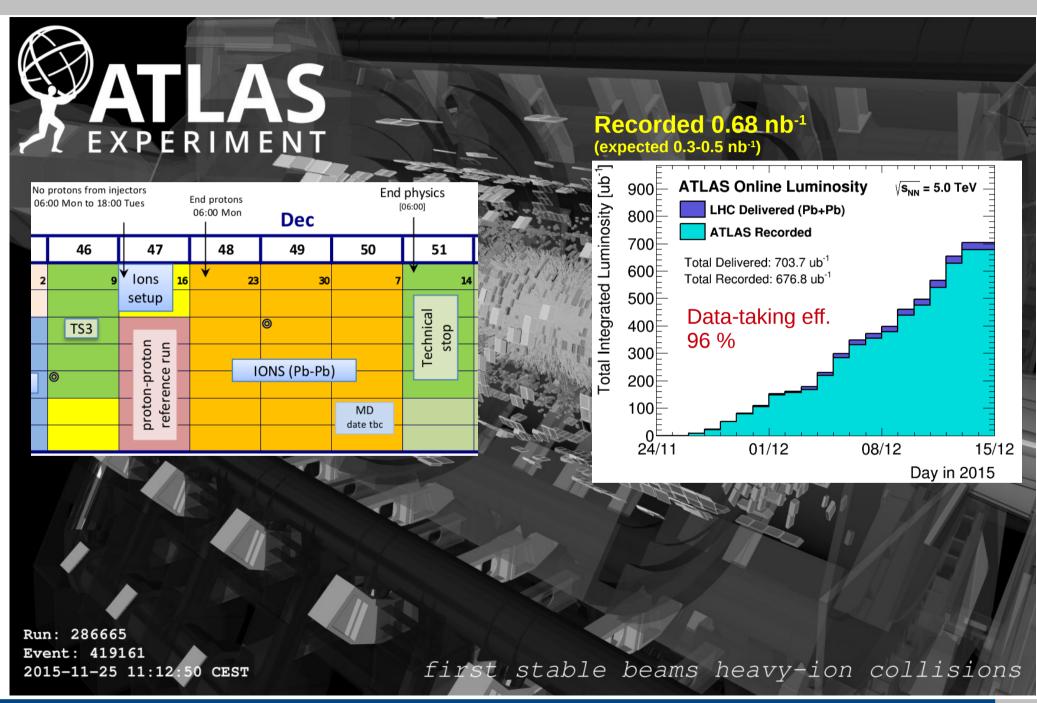
A high-mass dijet event. This event was collected in September 2015: the two central high-pT jets have an invariant mass of 8.8 TeV, the highest-pT jet has a pT of 810 GeV, and the subleading jet has a pT of 750 GeV. The missing ET for this event is 60 GeV.

A new era for proton-proton collisions

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

Heavy-Ion data-taking

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayPublicResults



Run: 286665 Event: 419161 2015-11-25 11:12:50 CEST

first stable beams heavy-ion collisions

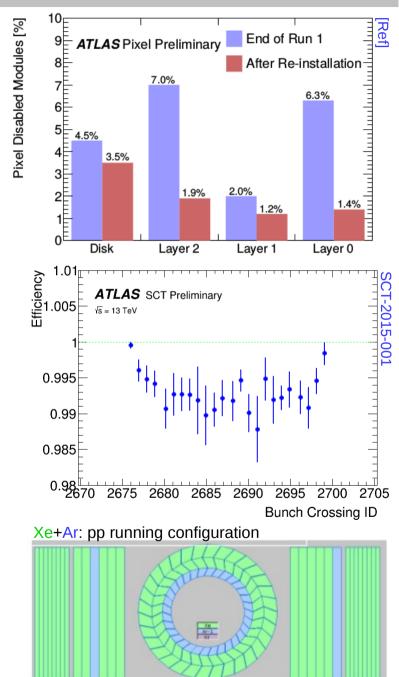
Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

Heavy-Ion data-taking

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

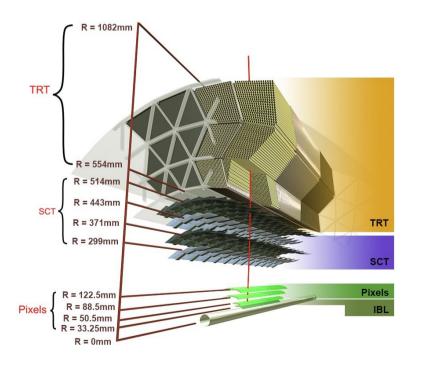
Inner Detector – Pixel, SCT and TRT

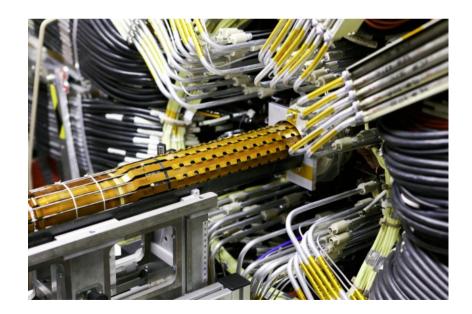
Pixel


- Operating smoothly
- Overall status of Pixel improved compared to end of Run-1
- New innermost layer (IBL) \rightarrow see next slides

• Silicon Strip Tracker (SCT)

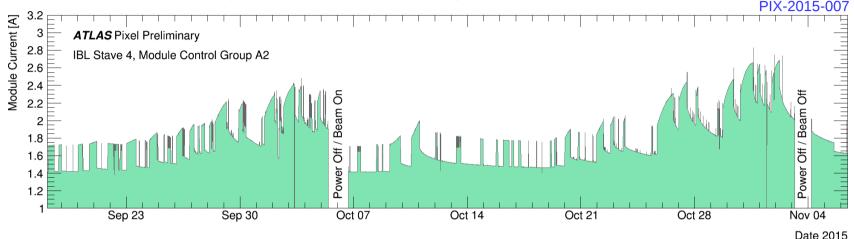
- Stable and reliable throughout 2015
- Performance comparable with Run-1
- Very small drop in hit efficiency for 25ns beams
 - This is expected for bunches within a train
 - Intrinsic hit efficiency can be seen in first bunch
 - No impact on tracking performance


• Transition Radiation Tracker (TRT)

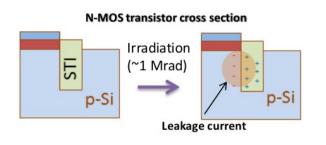

- Proved to sustain 100 KHz at 50% occupancy
- Still suffering from gas leaks
 - Currently ~150 liters per day
 - Xe gas replaced by (cheaper) Ar in the worst gas loops
- Negligible impact on electron identification
- For HI run changed full detector to Ar gas mix

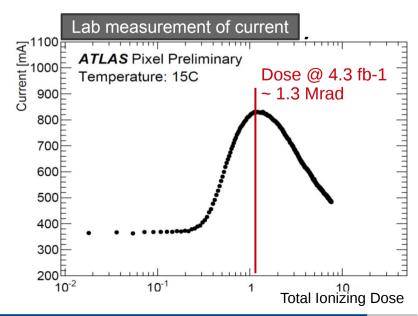
IBL – Insertable B-Layer

- New innermost layer for the ATLAS Pixel detector
 - Increases the number of pixel layers from $3 \rightarrow 4$
 - 6M additional channels, 50×250 µm² pixel size (compared to 50×400 for Pixel)
 - 8×40 µm² resolution
 - 3.3 cm from the beam line including a new (smaller) beam pipe
 - Required complete removal of the ATLAS Pixel volume during Long Shutdown 1
 - Provides better tracking for ATLAS
 - But of course also some operational issues as with any new detector

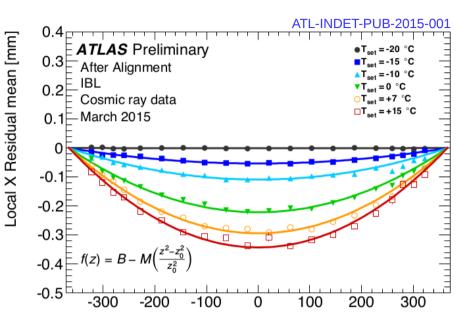


IBL – Front-End current drift

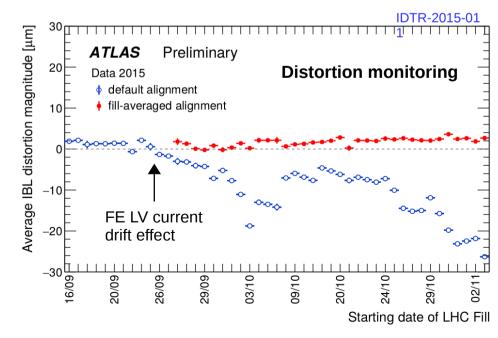

• Increase of FE current observed during data-taking


• Stopped IBL for 2 days in October for investigations

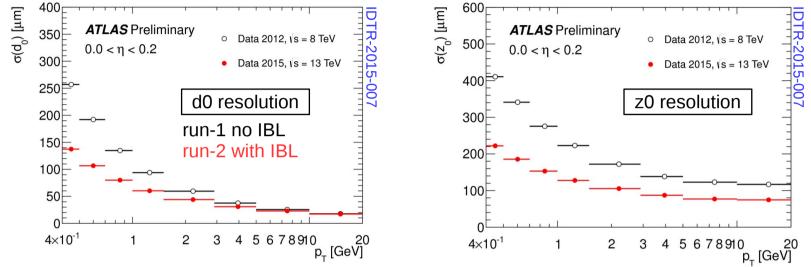
• Effect is due to irradiation


- Understood to be a N-MOS transistor leakage due to defects built-up at the Silicon Oxide (STI) interface and cumulated by ionizing dose
- Lab test confirms that effect will significantly reduce
 after a few additional Mrad of irradiation

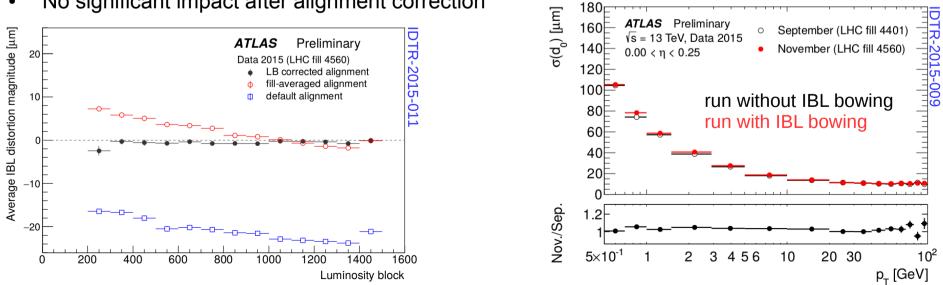
IBL – Mechanical Distortions


- Distortions due to temperature variations
 - Bowing of ~10µm/K observed during cosmic ray commissioning in early 2015
 - Under normal operations conditions temperature is stable within 0.2K
 - No impact on tracking performance
 - Became a problem with the current drifts of the previous slide

Global Z Position [mm]


• Run-by-run alignment

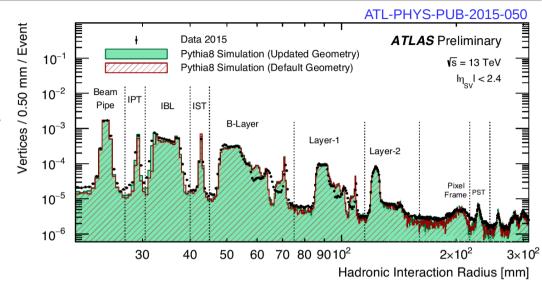
- Correction applied on a run-by-run basis before bulk reconstruction
- No significant effects on impact parameter resolution are observed
- Not easily possible in the High-Level Trigger
 - For the moment mitigating effect by applying larger error scaling



IBL – Performance

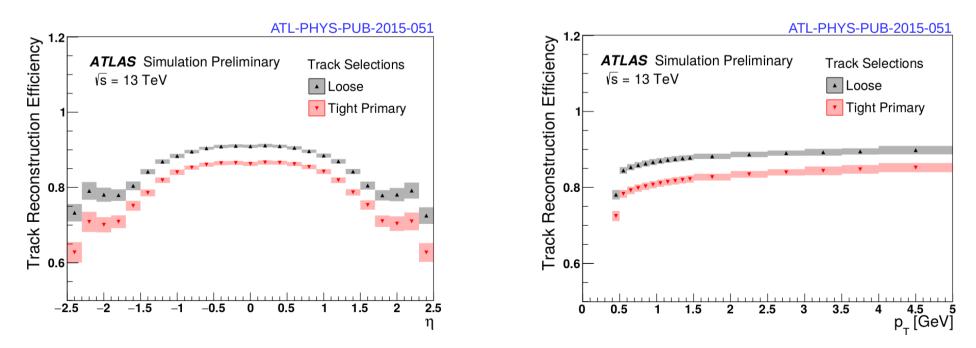
- IBL significantly improves impact parameter resolution ullet
 - About a factor two gain in impact parameter resolution for low-pT tracks

- Impact of IBL distortion
 - No significant impact after alignment correction

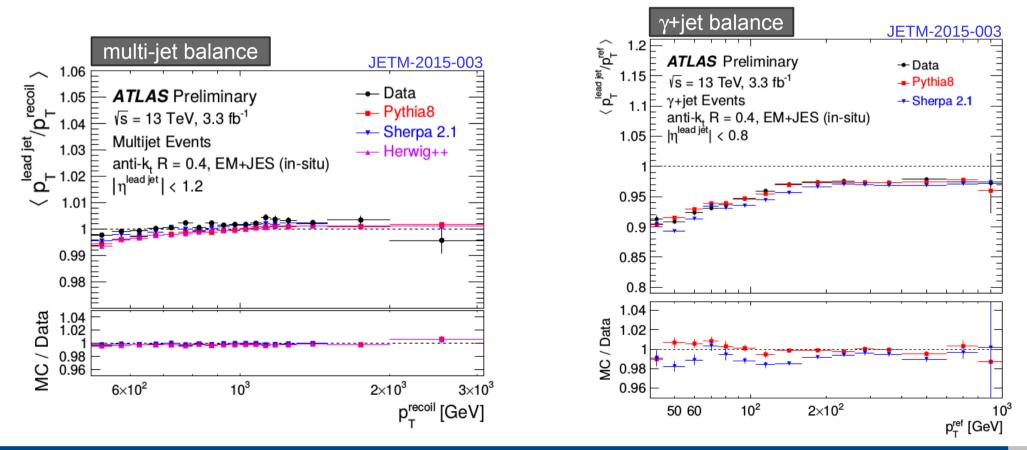

180

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

Tracking Performance and Material


• Material map of the Pixel detector

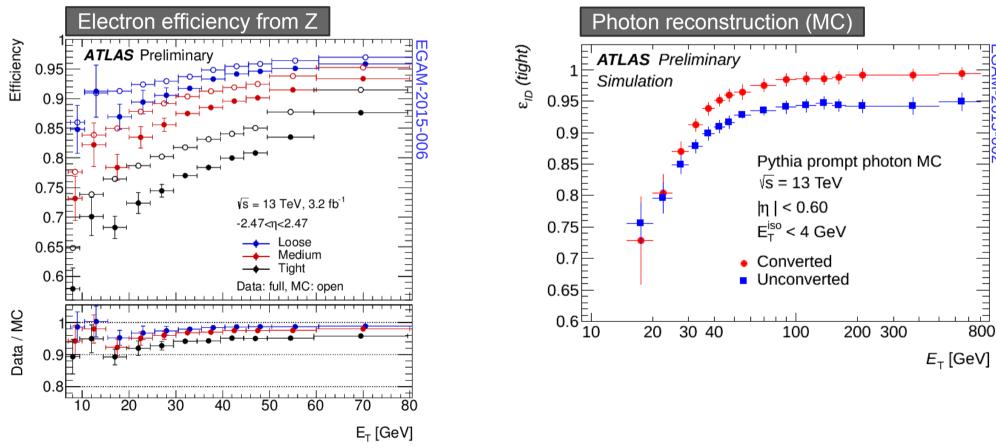
- Using hadronic interactions
- Using photon conversions
- Simulation updated with improved geometry


• Tracking efficiency

• 90% (85%) efficient for Loose (Tight Primary) selections for tracks above 5 GeV

Calorimeters and Jet reconstruction

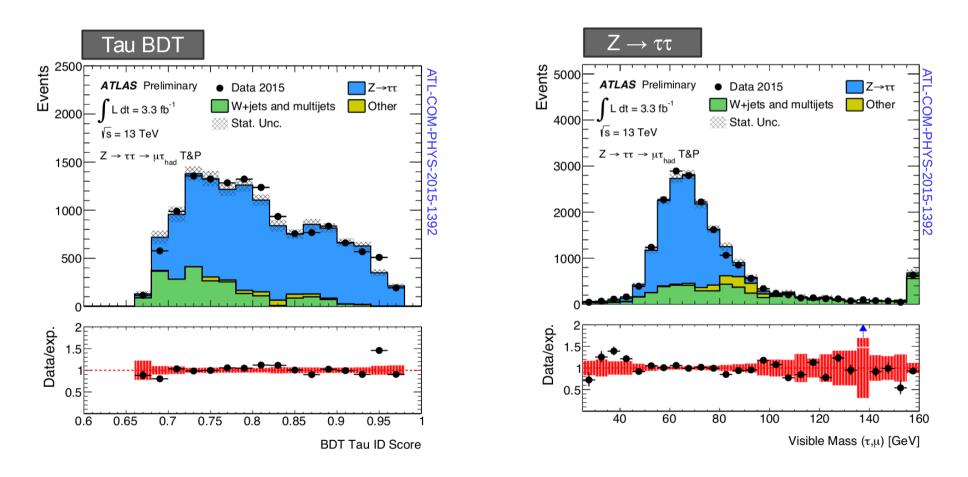
- Very stable operations for both LAr and Tile calorimeter
 - Good for physics: 99.4% (LAr) and 100% (Tile) based on Data Quality
 - LAr using 4 instead of 5 sample readout to achieve 100 kHz
 - Performing even better than during run-1
- In-situ jet energy-scale with full 2015 dataset
 - Agreement between data and MC better than 2% up to 3 TeV



Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

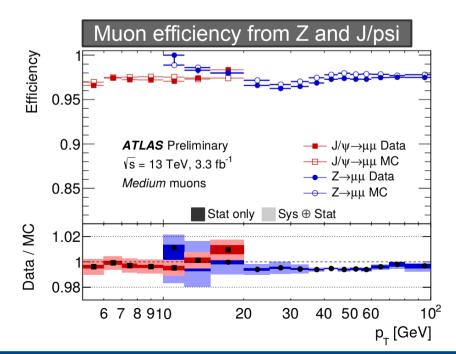
E/gamma reconstruction performance

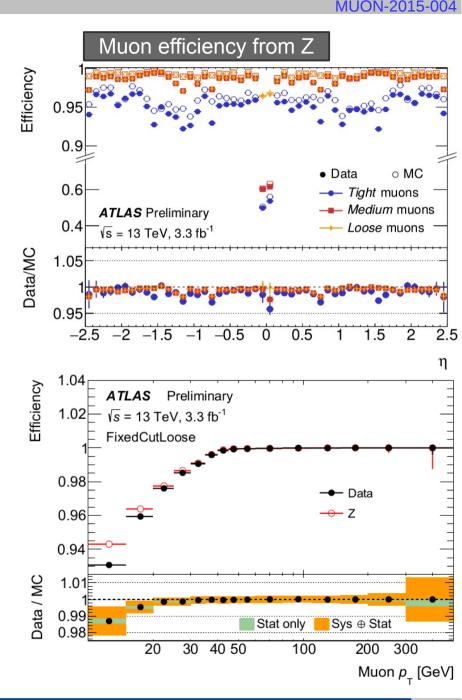
• Electron ID


- Likelihood (LH) combining LAr shower shapes, tracking, track-cluster matching and TRT PID
- LH improves background rejection by ~50% compared to cut-based ID with the same efficiency
- Photon ID
 - Using cut-based selection

The lower efficiency in data than in MC mostly arises from a known mismodelling of calorimetric shower shapes in the GEANT detector simulation

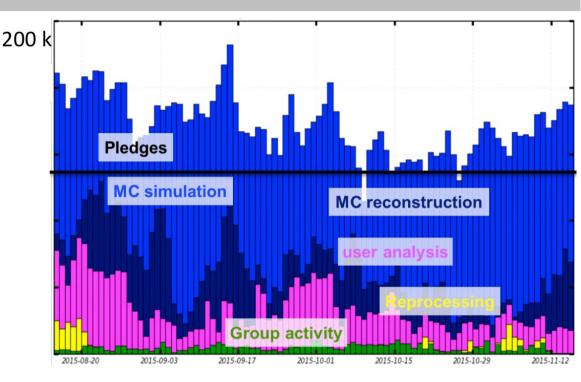
Tau reconstruction performance

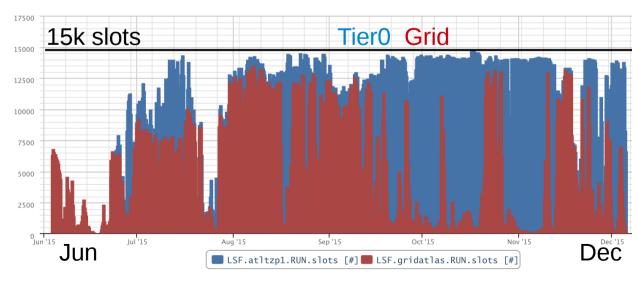

- Tau reconstruction
 - Tau identification performed both at trigger and offline level using a multivariate discriminant combining calorimeter, tracking and lifetime observables [ATL-PHYS-PUB-2015-045]
 - Performance measured on $Z \rightarrow \tau \tau$ candidates
 - Good agreement between data and MC



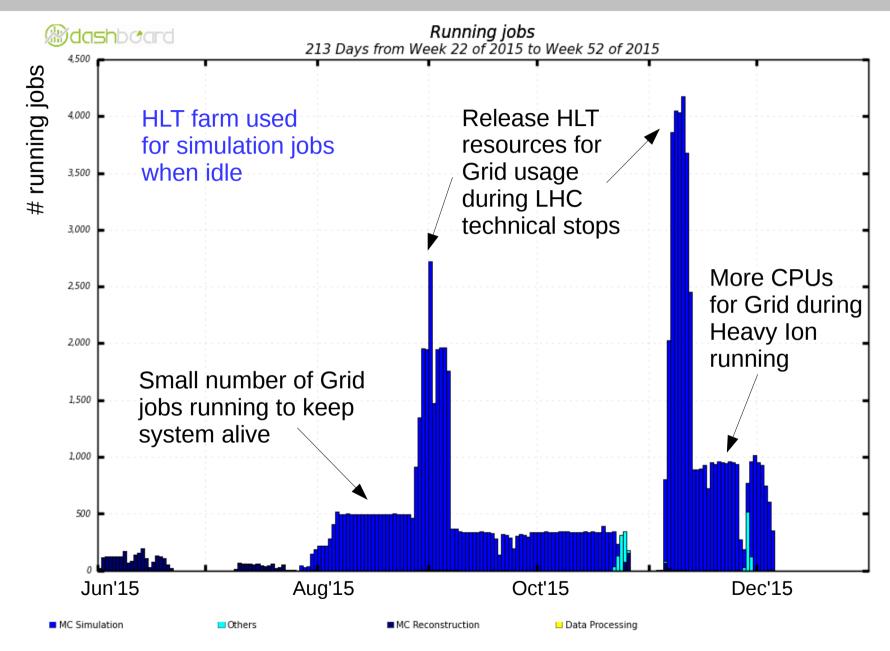
Muon Detector and Performance

• All Muon detectors operating well


- Readout operational at 100 kHz
- Alignment already good to O(50µm) in the barrel and O(100µm) in the endcap
- Performance studied with 2015 dataset
 - Three main working points
 - Tight, medium, loose
 - Good agreement between data and MC
 - Remaining differences accounted for by scale factors


Computing and Analysis

- Grid utilized at full capacity
 - Smooth operations
 - Running up to 200k jobs
 - Dominated by MC production
- Tier0 reconstruction
 - 15k jobs slots
 - Used for Grid jobs if not utilized by Tier0



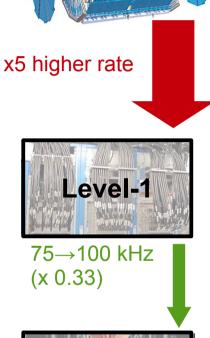
• Analysis dataset production

- New analysis model (xAOD) working extremely well
- Producing O(100) analysis specific derived datasets

High-Level Trigger farm usage for Grid jobs

These are opportunistic resources. Data-taking, testing and commissioning always has priority!

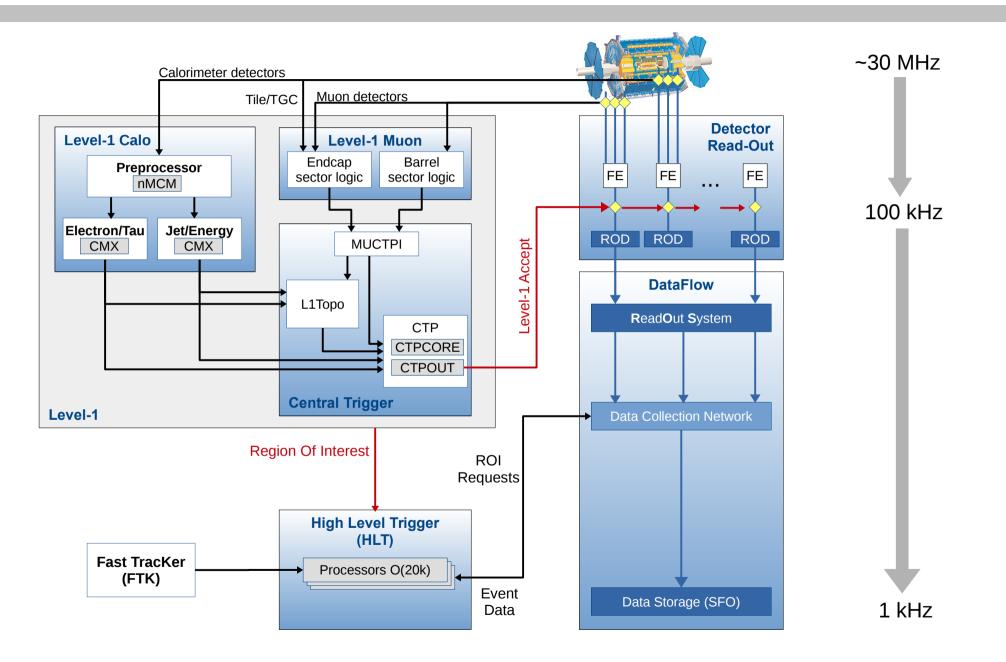
Trigger Performance

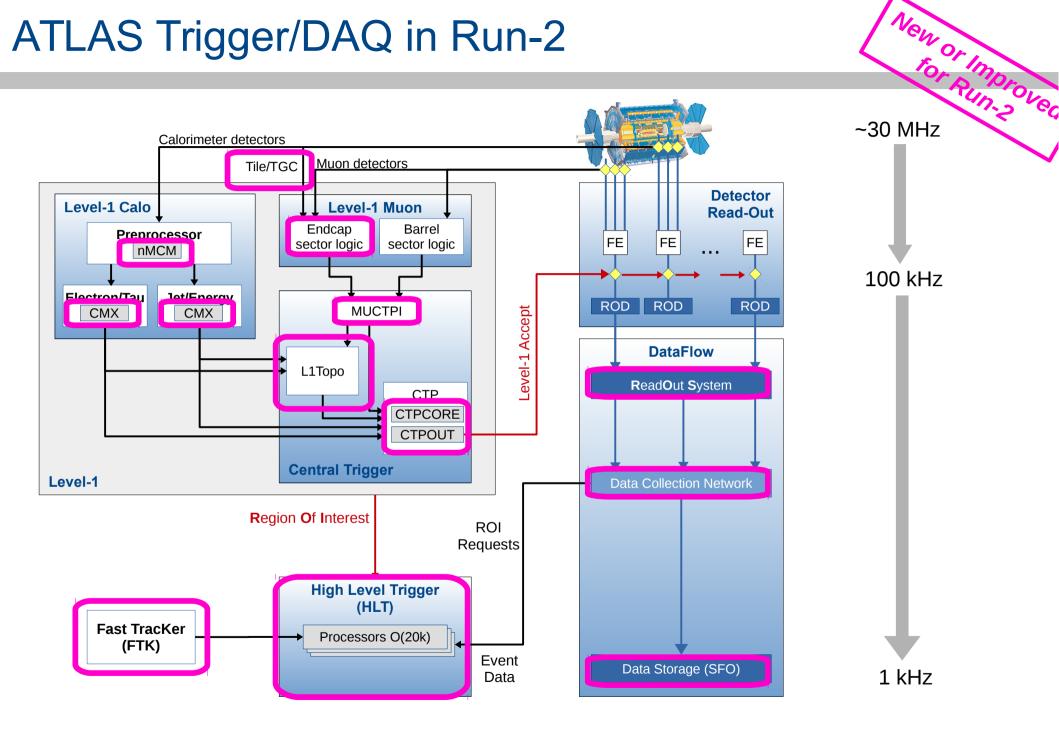

Trigger environment in Run-2

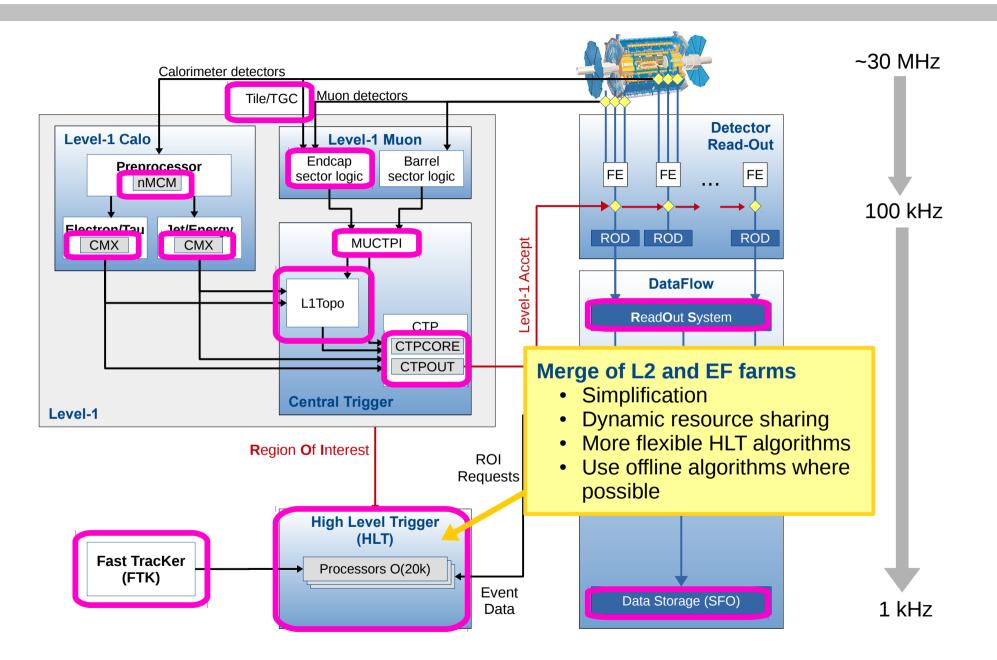
• LHC

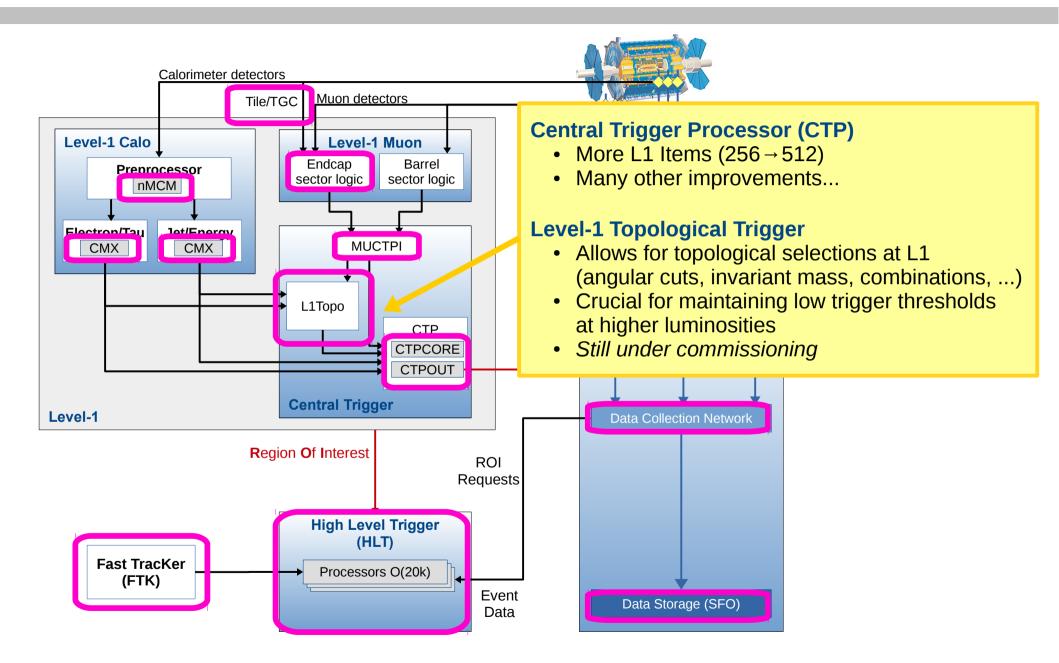
- Energy increase $8 \rightarrow 13$ TeV results in 2-2.5 times higher trigger rates
- Peak luminosity increase 0.8→1.7e34 results in ~2 times higher trigger rates

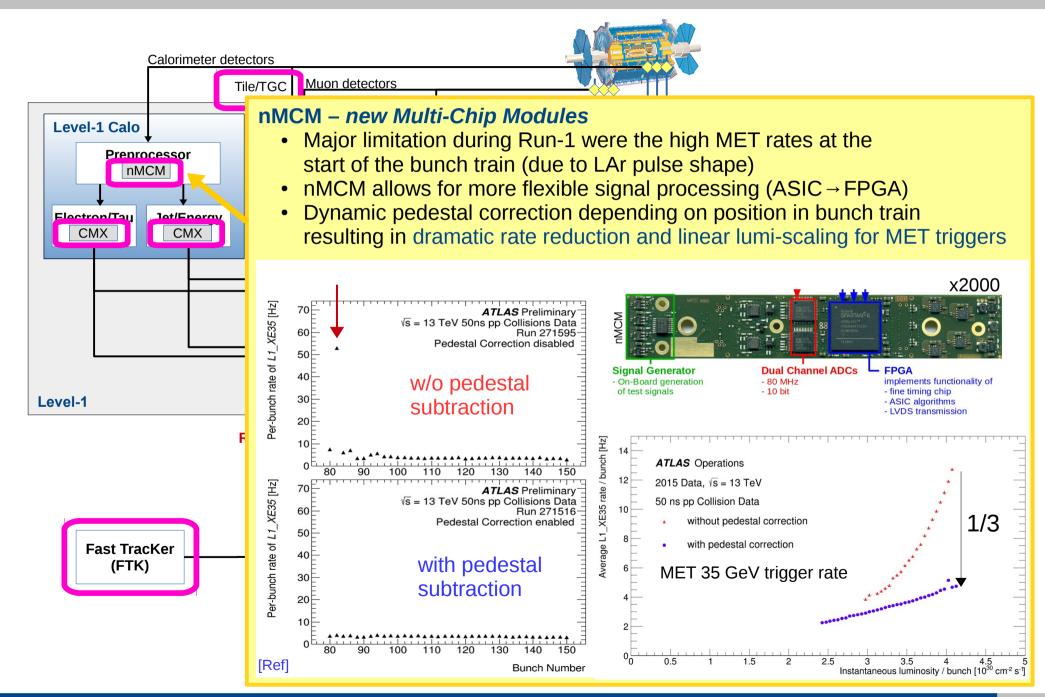
- Options to cope with increase in trigger rates
 - Increase output rate \rightarrow challenge for offline computing
 - Increase trigger thresholds \rightarrow loose potentially interesting physics
 - Reduce fake (non-physics) triggers
 - Increase trigger rejection power → better hardware/software
- Will show some of the improvements on the next slides...

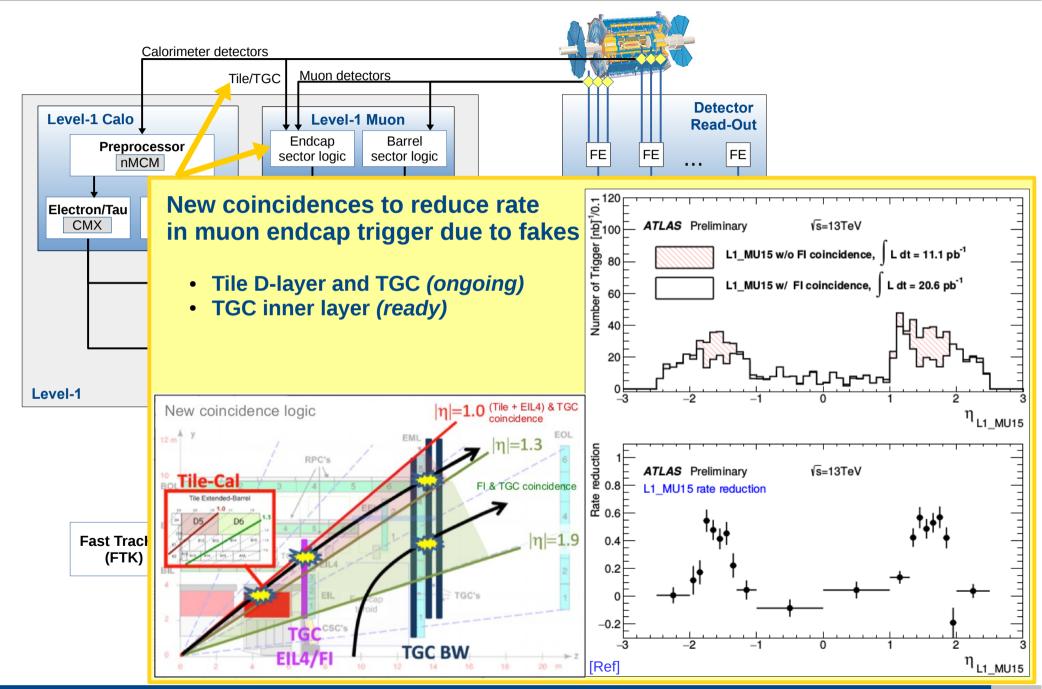


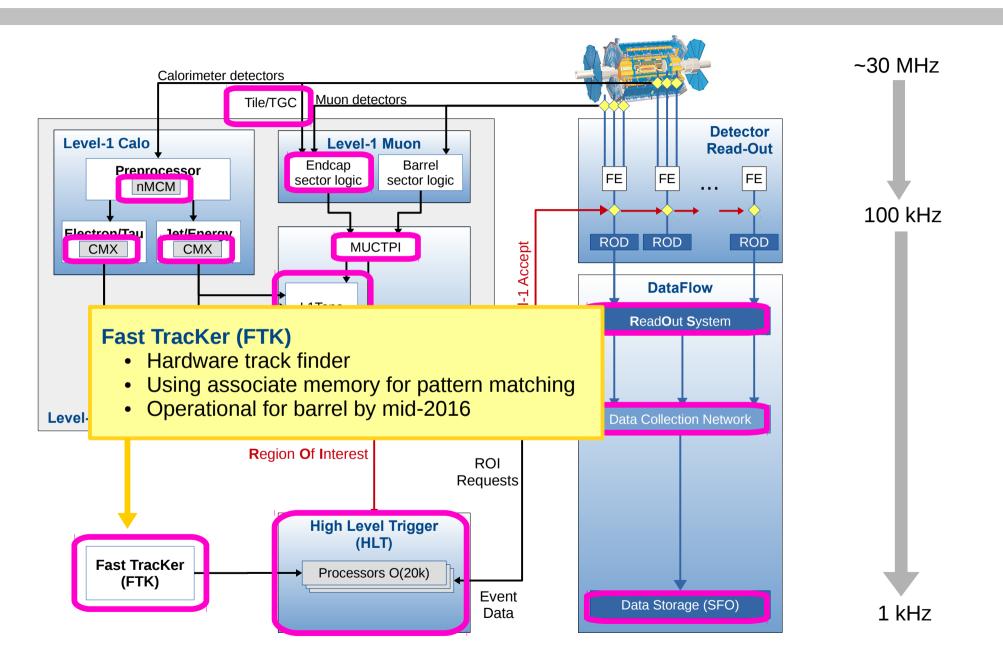





 $400 \rightarrow 1000 \text{ Hz}$


(x 2.5)





Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

[Ref]

	Typical offline selection	Trigger S	election	Level-1 Peak	HLT Peak
Trigger	-51	Level-1 (GeV)	HLT (GeV)	$\frac{\text{Rate (kHz)}}{L = 5 \times 10^{33}}$	$\frac{\text{Rate (Hz)}}{\text{cm}^{-2}\text{s}^{-1}}$
Single leptons	Single iso μ , $p_{\rm T} > 21 \text{ GeV}$	15	20	7	130
Single leptons	Single $e, p_{\rm T} > 25 \text{ GeV}$	20	24	18	139
	Single μ , $p_{\rm T} > 42$ GeV	20	40	5	33
	Single τ , $p_{\rm T} > 90$ GeV	60	80	2	41
	Two μ 's, each $p_{\rm T} > 11 \text{ GeV}$	2×10	2×10	0.8	19
	Two μ 's, $p_{\rm T} > 19, 10 \text{ GeV}$	15	18, 8	7	18
Two leptons	Two loose e 's, each $p_{\rm T} > 15 \text{ GeV}$	2×10	2×12	10	5
	One e & one μ , $p_{\rm T} > 10, 26$ GeV	$20 \; (\mu)$	7, 24	5	1
	One loose e & one μ , $p_{\rm T} > 19, 15$ GeV	15, 10	17, 14	0.4	2
	Two τ 's, $p_{\rm T} > 40, 30$ GeV	20, 12	35, 25	2	22
	One τ , one μ , $p_{\rm T} > 30, 15$ GeV	12, 10 (+jets)	25, 14	0.5	10
	One τ , one $e, p_{\rm T} > 30, 19 \text{ GeV}$	12, 15 (+jets)	25, 17	1	3.9
	Three loose e 's, $p_{\rm T} > 19, 11, 11$ GeV	$15, 2 \times 7$	$17, 2 \times 9$	3	< 0.1
	Three μ 's, each $p_{\rm T} > 8 \text{ GeV}$	3×6	3×6	< 0.1	4
Three leptons	Three μ 's, $p_{\rm T} > 19, 2 \times 6$ GeV	15	$18, 2 \times 4$	7	2
	Two μ 's & one $e, p_{\rm T} > 2 \times 11, 14 \text{ GeV}$	$2 \times 10 \; (\mu's)$	$2 \times 10, 12$	0.8	0.2
	Two loose e 's & one μ , $p_{\rm T} > 2 \times 11, 11 \text{ GeV}$	$2 \times 8, 10$	$2 \times 12, 10$	0.3	< 0.1
One photon	one γ , $p_{\rm T} > 125 \text{ GeV}$	22	120	8	20
Two photons	Two loose γ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	2×15	35, 25	1.5	12
1 wo photons	Two tight γ 's, $p_{\rm T} > 25, 25 \text{ GeV}$	2×15	2×20	1.5	7
Circela ist	Jet $(R = 0.4), p_{\rm T} > 400 {\rm GeV}$	100	360	0.9	18
Single jet	Jet $(R = 1.0), p_{\rm T} > 400 {\rm GeV}$	100	360	0.9	23
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 180 { m ~GeV}$	50	70	0.7	55
	Four jets, each $p_{\rm T} > 95$ GeV	3×40	4×85	0.3	20
Multi-jets	Five jets, each $p_{\rm T} > 70$ GeV	4×20	5×60	0.4	15
	Six jets, each $p_{\rm T} > 55 \text{ GeV}$	4×15	6×45	1.0	12
	One loose $b, p_{\rm T} > 235 \text{ GeV}$	100	225	0.9	35
h iota	Two medium <i>b</i> 's, $p_{\rm T} > 160, 60 \text{ GeV}$	100	150, 50	0.9	9
b-jets	One b & three jets, each $p_{\rm T} > 75~{\rm GeV}$	3×25	4×65	0.9	11
	Two b & two jets, each $p_{\rm T} > 45 \text{ GeV}$	3×25	4×35	0.9	9
b-physics	Two μ 's, $p_{\rm T} > 6, 4$ GeV	6, 4	6.4	8	52
0-physics	plus dedicated b -physics selections	0, 4	6, 4	0	52
Total	Total			70	1400

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
Trigger		Level-1 (GeV)	HLT (GeV)		Rate (Hz)
				$L = 5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$	
Single leptons	Single iso μ , $p_{\rm T} > 21 \text{ GeV}$	15	20	7	130
Single leptons	Single $e, p_{\rm T} > 25$ GeV	20	24	18	139
	Single μ , $p_{\rm T} > 42$ GeV	20	40	5	33
	Single τ , $p_{\rm T} > 90$ GeV	60	80	2	41

• In total 400 L1 triggers and 1500 HLT triggers

- Primary triggers, usually unprescaled
- Support and background triggers, usually prescaled
- Alternative triggers, using different algorithms
- Backup triggers, using tighter selections
- Calibration triggers, usually providing partially built events

• Aim was to keep primary physics triggers stable during 2015

- Ensures continuity of trigger selection for physics analysis
- At cost of slightly higher output rate than planned

$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 180 { m ~GeV}$	50	70	0.7	55
	Four jets, each $p_{\rm T} > 95$ GeV	3×40	4×85	0.3	20
Multi-jets	Five jets, each $p_{\rm T} > 70$ GeV	4×20	5×60	0.4	15
	Six jets, each $p_{\rm T} > 55 \text{ GeV}$	4×15	6×45	1.0	12
	One loose $b, p_{\rm T} > 235 \text{ GeV}$	100	225	0.9	35
b-jets	Two medium <i>b</i> 's, $p_{\rm T} > 160, 60 \text{ GeV}$	100	150, 50	0.9	9
0-jets	One <i>b</i> & three jets, each $p_{\rm T} > 75$ GeV	3×25	4×65	0.9	11
	Two b & two jets, each $p_{\rm T} > 45 \text{ GeV}$	3×25	4×35	0.9	9
b-physics	Two μ 's, $p_{\rm T} > 6, 4 \text{ GeV}$	C A	6,4	8	52
0-physics	plus dedicated b -physics selections	6, 4	0, 4	0	52
Total	Total			70	1400

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

[Ref]

[Ref]

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Trigger	Typical offline selection	Trigger Selection		Level-1 Peak	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Typical online selection	Level-1 (GeV)	HLT (GeV)	$\frac{\text{Rate (kHz)}}{L = 5 \times 10^{33}}$	$\frac{\text{Rate (Hz)}}{\text{cm}^{-2}\text{s}^{-1}}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Single iso μ , $p_T > 21$ GeV	15	20		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Single leptons			24	18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Single μ , $p_{\rm T} > 42$ GeV	20	40	5	33
Two leptons Two loose e^{is} , each $p_T > 15$ GeV 2 × 10 2 × 12 10 5 One e & one μ , $p_T > 10, 26$ GeV 20 (μ) 7, 24 5 1 One e de one μ , $p_T > 10, 126$ GeV 20 (μ) 7, 24 5 1 One e de one μ , $p_T > 10, 15$ GeV 20 (μ) 7, 24 5 1 One τ , one μ , $p_T > 30, 15$ GeV 20, 12 35, 25 2 22 One τ , one e , $p_T > 30, 15$ GeV 12, 10 (+-jets) 25, 17 1 3.9 Three loose e^is , $p_T > 19, 11, 11$ GeV 15, 2.7 17, 2.8.9 3 <0.1		Single τ , $p_{\rm T} > 90$ GeV	60	80	2	41
Two leptons Two loose e^{is} , each $p_T > 15$ GeV 2 × 10 2 × 12 10 5 One e & one μ , $p_T > 10, 26$ GeV 20 (μ) 7, 24 5 1 One e de one μ , $p_T > 10, 126$ GeV 20 (μ) 7, 24 5 1 One e de one μ , $p_T > 10, 15$ GeV 20 (μ) 7, 24 5 1 One τ , one μ , $p_T > 30, 15$ GeV 20, 12 35, 25 2 22 One τ , one e , $p_T > 30, 15$ GeV 12, 10 (+-jets) 25, 17 1 3.9 Three loose e^is , $p_T > 19, 11, 11$ GeV 15, 2.7 17, 2.8.9 3 <0.1		Two μ 's, each $p_{\rm T} > 11 \text{ GeV}$	2×10	2×10	0.8	19
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two μ 's, $p_{\rm T} > 19, 10 { m ~GeV}$	15	18, 8	7	18
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Two leptons	Two loose e's, each $p_{\rm T} > 15 \text{ GeV}$	2×10	2×12	10	5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	One e & one μ , $p_{\rm T} > 10, 26$ GeV	$20 \; (\mu)$	7, 24	5	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		One loose e & one μ , $p_{\rm T} > 19, 15$ GeV	15, 10	17, 14	0.4	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two τ 's, $p_{\rm T} > 40, 30 {\rm GeV}$	20, 12	35, 25	2	22
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		One τ , one μ , $p_{\rm T} > 30, 15 \text{ GeV}$	12, 10 (+jets)	25, 14	0.5	10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		One τ , one $e, p_{\rm T} > 30, 19 \text{ GeV}$	12, 15 (+jets)	25, 17	1	3.9
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Three loose e 's, $p_{\rm T} > 19, 11, 11 {\rm GeV}$	$15, 2 \times 7$	$17, 2 \times 9$	3	< 0.1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			3×6	3×6	< 0.1	4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Three leptons	Three μ 's, $p_{\rm T} > 19, 2 \times 6$ GeV	15	$18, 2 \times 4$	7	2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Two μ 's & one $e, p_{\rm T} > 2 \times 11, 14$ GeV	$2 \times 10 \; (\mu's)$	$2 \times 10, 12$	0.8	0.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$2 \times 8, 10$	$2 \times 12, 10$	0.3	< 0.1
	One photon		22	120	8	20
I wo tight γ s, $p_T > 25, 25 \text{ GeV}$ 2×15 2×20 1.5 (7) Single jetJet $(R = 0.4), p_T > 400 \text{ GeV}$ 1003600.918Jet $(R = 1.0), p_T > 400 \text{ GeV}$ 1003600.923 E_T^{miss} $E_T^{\text{miss}} > 180 \text{ GeV}$ 50700.755Multi-jetsFour jets, each $p_T > 95 \text{ GeV}$ 3×40 4×85 0.320Multi-jetsFive jets, each $p_T > 70 \text{ GeV}$ 4×20 5×60 0.415Six jets, each $p_T > 55 \text{ GeV}$ 4×15 6×45 1.012 b -jetsOne loose $b, p_T > 235 \text{ GeV}$ 1002250.935 b -jetsTwo medium b 's, $p_T > 160, 60 \text{ GeV}$ 100150, 500.99 b -jetsTwo μ 's, $p_T > 6, 4 \text{ GeV}$ 3×25 4×35 0.99 b -physicsTwo μ 's, $p_T > 6, 4 \text{ GeV}$ $6, 4$ $6, 4$ 8 52	Two shotons		2×15	35, 25	1.5	12
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I wo photons	Two tight γ 's, $p_{\rm T} > 25, 25$ GeV	2×15	2×20	1.5	7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	d : 1 : 4	Jet $(R = 0.4), p_{\rm T} > 400 {\rm GeV}$	100	360	0.9	18
Multi-jetsFour jets, each $p_{T} > 95 \text{ GeV}$ 3×40 4×85 0.3 20 Five jets, each $p_{T} > 70 \text{ GeV}$ 4×20 5×60 0.4 15 Six jets, each $p_{T} > 55 \text{ GeV}$ 4×15 6×45 1.0 12 $b-jets$ One loose $b, p_{T} > 235 \text{ GeV}$ 100 225 0.9 35 Two medium b 's, $p_{T} > 160, 60 \text{ GeV}$ 100 $150, 50$ 0.9 9 One b & three jets, each $p_{T} > 75 \text{ GeV}$ 3×25 4×65 0.9 11 Two b & two jets, each $p_{T} > 45 \text{ GeV}$ 3×25 4×35 0.9 9 $b-physics$ Two μ 's, $p_{T} > 6, 4 \text{ GeV}$ plus dedicated b -physics selections $6, 4$ $6, 4$ 8 52	Single jet		100	360	0.9	23
Multi-jetsFour jets, each $p_{T} > 95 \text{ GeV}$ 3×40 4×85 0.3 20 Five jets, each $p_{T} > 70 \text{ GeV}$ 4×20 5×60 0.4 15 Six jets, each $p_{T} > 55 \text{ GeV}$ 4×15 6×45 1.0 12 $b-jets$ One loose $b, p_{T} > 235 \text{ GeV}$ 100 225 0.9 35 Two medium b 's, $p_{T} > 160, 60 \text{ GeV}$ 100 $150, 50$ 0.9 9 One b & three jets, each $p_{T} > 75 \text{ GeV}$ 3×25 4×65 0.9 11 Two b & two jets, each $p_{T} > 45 \text{ GeV}$ 3×25 4×35 0.9 9 $b-physics$ Two μ 's, $p_{T} > 6, 4 \text{ GeV}$ plus dedicated b -physics selections $6, 4$ $6, 4$ 8 52	$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$	50	70	0.7	55
Multi-jets Five jets, each $p_{T} > 70 \text{ GeV}$ 4×20 5×60 0.4 15 Six jets, each $p_{T} > 55 \text{ GeV}$ 4×15 6×45 1.0 12 $b-jets$ One loose $b, p_{T} > 235 \text{ GeV}$ 100 225 0.9 35 $b-jets$ One loose $b, p_{T} > 235 \text{ GeV}$ 100 $150, 50$ 0.9 9 $b-jets$ One b & three jets, each $p_{T} > 75 \text{ GeV}$ 3×25 4×65 0.9 9 $b-jets$ Two medium b's, $p_{T} > 160, 60 \text{ GeV}$ 3×25 4×65 0.9 9 $b-jets$ Two b & two jets, each $p_{T} > 45 \text{ GeV}$ 3×25 4×35 0.9 9 $b-physics$ Two μ 's, $p_{T} > 6, 4 \text{ GeV}$ $6, 4$ $6, 4$ 8 52	1		3×40	4×85	0.3	20
	Multi-jets					
$b-\text{jets} \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $	j		4×15	6×45	1.0	12
$b-\text{jets} \begin{array}{ c c c c c c c c } \hline T \text{wo medium } b\text{'s, } p_{T} > 160, 60 \text{ GeV} & 100 & 150, 50 & 0.9 & 9 \\ \hline O \text{ne } b \& \text{ three jets, each } p_{T} > 75 \text{ GeV} & 3 \times 25 & 4 \times 65 & 0.9 & 11 \\ \hline T \text{wo } b \& \text{ two jets, each } p_{T} > 45 \text{ GeV} & 3 \times 25 & 4 \times 35 & 0.9 & 9 \\ \hline b-\text{physics} & \hline T \text{wo } \mu\text{'s, } p_{T} > 6, 4 \text{ GeV} & 6, 4 & 6, 4 & 8 & 52 \\ \hline p \text{lus dedicated } b\text{-physics selections} & 6, 4 & 6, 4 & 8 & 52 \\ \hline \end{array}$	<i>b</i> -jets		100	225	0.9	35
$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Two b & two jets, each $p_T > 45 \text{ GeV}$ 3×25 4×35 0.9 9 b-physicsTwo μ 's, $p_T > 6, 4 \text{ GeV}$ plus dedicated b-physics selections $6, 4$ $6, 4$ 8 52			3×25			11
$b-physics \qquad \begin{array}{c} \text{Two } \mu \text{'s, } p_{\text{T}} > 6, 4 \text{ GeV} \\ \text{plus dedicated } b-physics selections \end{array} \qquad 6, 4 \qquad 6, 4 \qquad 8 \qquad 52 \end{array}$						9
	b-physics	Two μ 's, $p_{\rm T} > 6, 4$ GeV	6, 4		8	52
	Total	prus dedicated o-physics selections			80	1.400

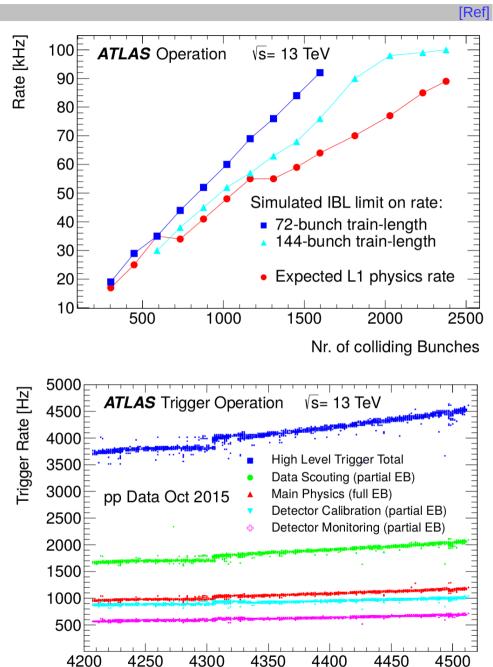
Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

	Typical offline selection	Trigger Selection		Level-1 Peak	HLT Peak
Trigger		Level-1 (GeV)	HLT (GeV)	Rate (kHz) $L = 5 \times 10^{33}$	$\frac{\text{Rate (Hz)}}{\text{cm}^{-2}\text{s}^{-1}}$
Single leptons	Single iso μ , $p_{\rm T} > 21 \text{ GeV}$	15	20	7	130
Single leptons	Single $e, p_{\rm T} > 25$ GeV	20	24	18	139
	Single μ , $p_{\rm T} > 42 {\rm ~GeV}$	20	40	5	33
	Single τ , $p_{\rm T} > 90$ GeV	60	80	2	41
	Two μ 's, each $p_{\rm T} > 11 \text{ GeV}$	2×10	2×10	0.8	19
	Two μ 's, $p_{\rm T} > 19, 10 { m ~GeV}$	15	18, 8	7	18
Two leptons	Two loose e's, each $p_{\rm T} > 15 \text{ GeV}$	2×10	2×12	10	5
	One <i>e</i> & one μ , $p_{\rm T} > 10, 26 {\rm GeV}$	$20 \ (\mu)$	7, 24	5	1
	One loose e & one μ , $p_{\rm T} > 19, 15$ GeV	15, 10	17, 14	0.4	2
	Two τ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	20, 12	35, 25	2	22
	One τ , one μ , $p_{\rm T} > 30, 15 \text{ GeV}$	12, 10 (+jets)	25, 14	0.5	10
	One τ one $e^{-n\pi} > 30.19 \text{ GeV}$	12, 15 (+iets)	25 17	1	3.9

Trigger Menu Evolution is prepared for up to 2e34

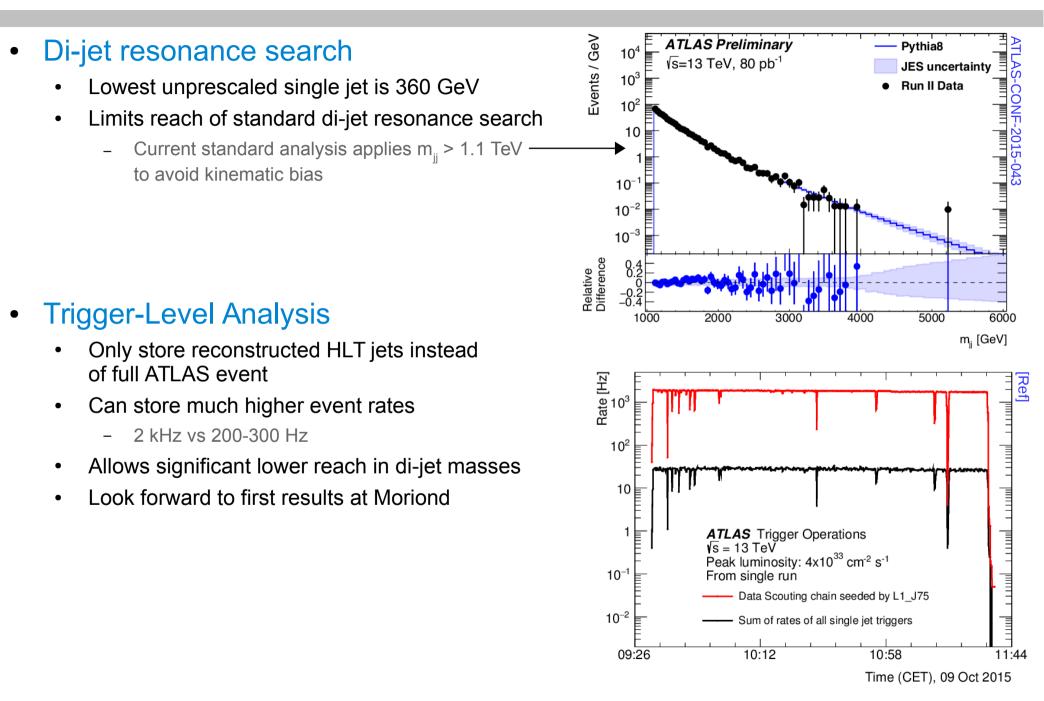
	$p_{\rm T} > 2 \times 11, 11 {\rm GeV}$	2 / 0, 10	1 A 12, 10	0.0	< 0.1
One photon	one γ , $p_{\rm T} > 125 { m ~GeV}$	22	120	8	20
Two photons	Two loose γ 's, $p_{\rm T} > 40, 30 \text{ GeV}$	2×15	35, 25	1.5	12
Two photons	Two tight γ 's, $p_{\rm T} > 25, 25 \text{ GeV}$	2×15	2×20	1.5	7
Single jet	Jet $(R = 0.4), p_{\rm T} > 400 \text{ GeV}$	100	360	0.9	18
Single Jet	Jet $(R = 1.0), p_{\rm T} > 400 \text{ GeV}$	100	360	0.9	23
$E_{\rm T}^{\rm miss}$	$E_{\rm T}^{\rm miss} > 180 {\rm ~GeV}$	50	70	0.7	55
	Four jets, each $p_{\rm T} > 95$ GeV	3×40	4×85	0.3	20
Multi-jets	Five jets, each $p_{\rm T} > 70 {\rm GeV}$	4×20	5×60	0.4	15
	Six jets, each $p_{\rm T} > 55 \text{ GeV}$	4×15	6×45	1.0	12
	One loose $b, p_{\rm T} > 235 \text{ GeV}$	100	225	0.9	35
h iota	Two medium b's, $p_{\rm T} > 160, 60 \text{ GeV}$	100	150, 50	0.9	9
b-jets	One <i>b</i> & three jets, each $p_{\rm T} > 75$ GeV	3×25	4×65	0.9	11
	Two b & two jets, each $p_{\rm T} > 45 \text{ GeV}$	3×25	4×35	0.9	9
b-physics	Two μ 's, $p_{\rm T} > 6, 4$ GeV plus dedicated <i>b</i> -physics selections	6, 4	6, 4	8	52
Total				70	1400

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

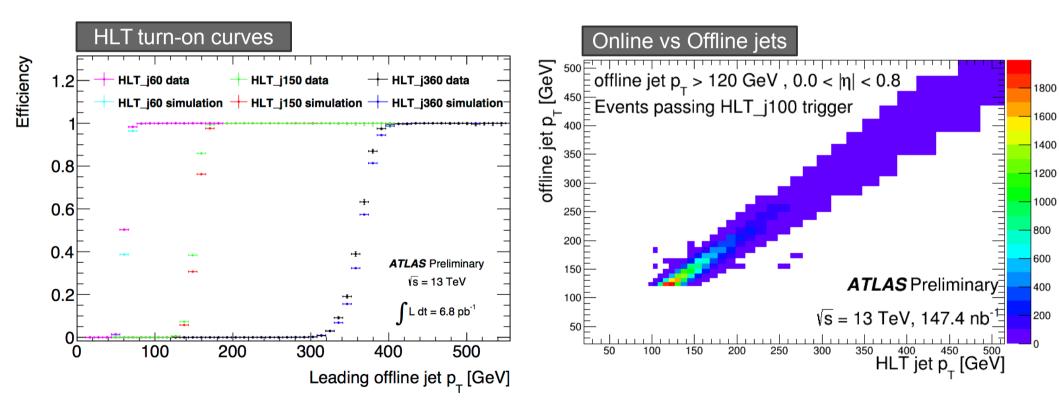

[Ref]

Trigger rates during Run-2

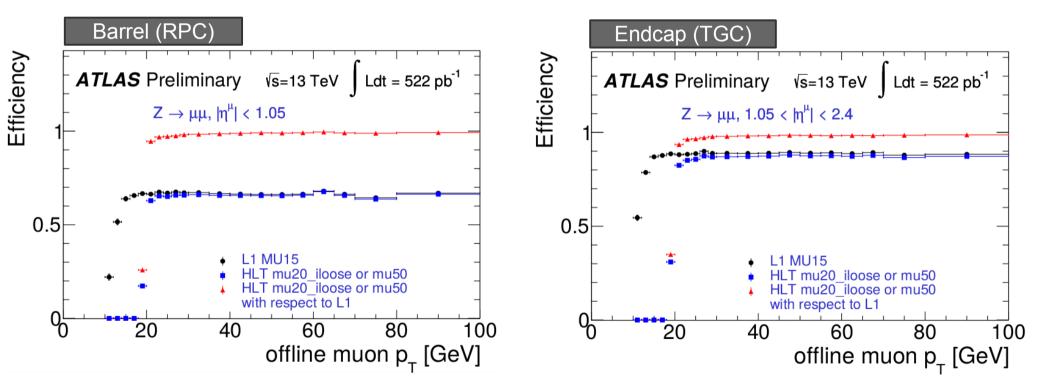
- Level-1 trigger rate
 - ATLAS can run at 100 kHz
 - However, at low number of bunches, dangerous resonance frequencies could damage the IBL wire-bonds
 - Automatic fixed frequency veto protects IBL
 - Physics trigger menu not affected by this rate limitation



- 1 kHz physics output rate
- 4 kHz total output rate due to additional (partial event) rates from
 - Calibration and monitoring events
 - Data Scouting events
 - Bandwidth ~1.5 GB/s (80% for physics)


instantaneous Luminosity [10³⁰ cm⁻²s⁻¹]

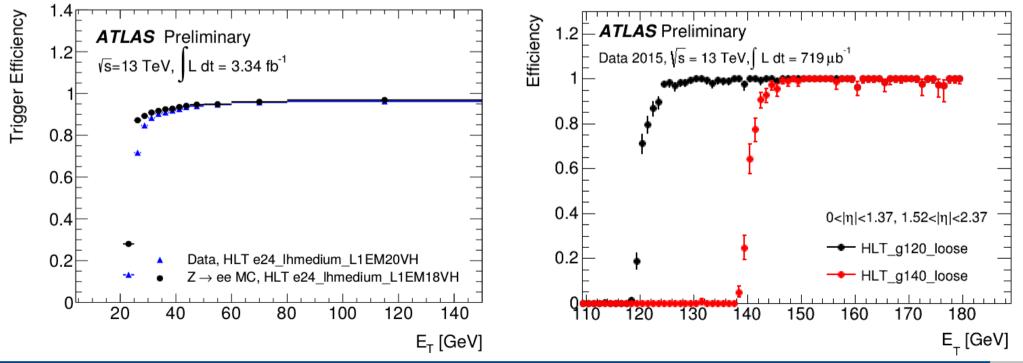
Trigger-Level Analysis / DataScouting


Jet Trigger Performance

- Jet trigger improvements for Run-2
 - Using topo-cluster based offline jet reconstruction of the entire calorimeter
 - As opposed to two-step (partial → full) reconstruction in run-1
 - Implemented jet area pileup suppression
 - Good agreement between online/offline jet energy scale

Muon Trigger Performance

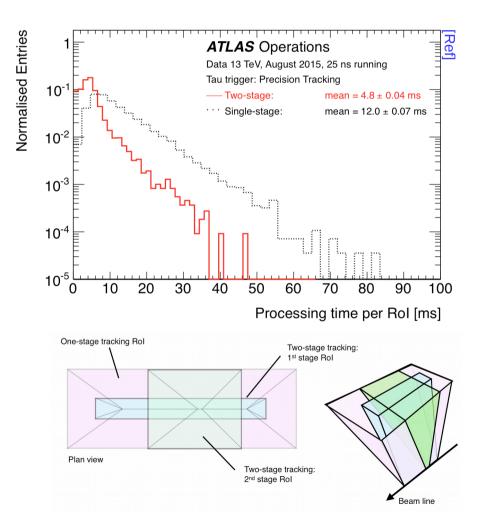
- Barrel (RPC) and Endcap (TGC) muon trigger
 - Low barrel L1 trigger efficiency due to geometrical trigger chamber coverage
 - Worst in the ATLAS feet region
 - HLT close to 100% efficient compared to L1
 - Factor 3 speed improvement in muon full scan finding
 - To prevent efficiency loss from L1 for di-muon trigger signatures

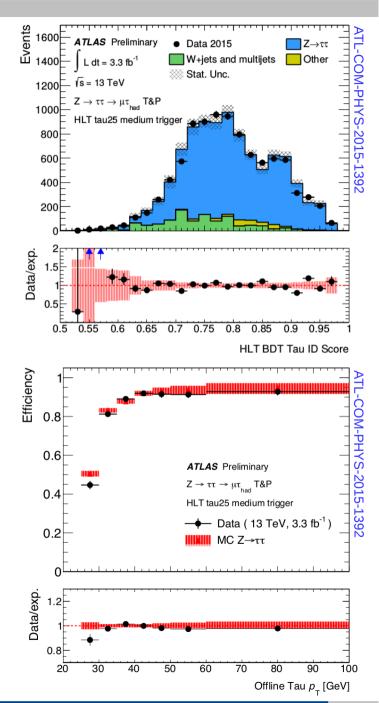

Electron and Photon Trigger Performance

Improvements for Run-2

- New fast tracking algorithms
- MVA energy calibration
- Likelihood-based identification used for electrons (was cut-based in Run-1)

• Performance in Run-2

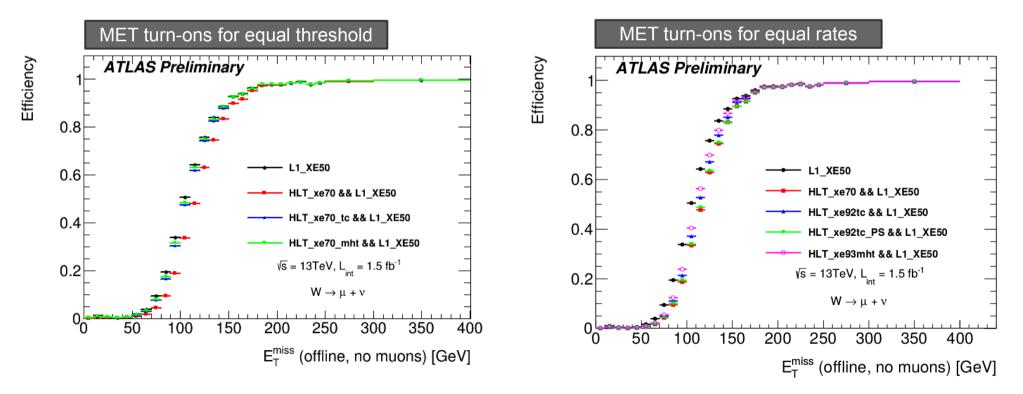

- Single (isolated) electron triggers with minimum threshold of 24 GeV
- Medium electron identification criteria (will move to tight selections for higher luminosities)
- Photon triggers close to 100% efficient at threshold



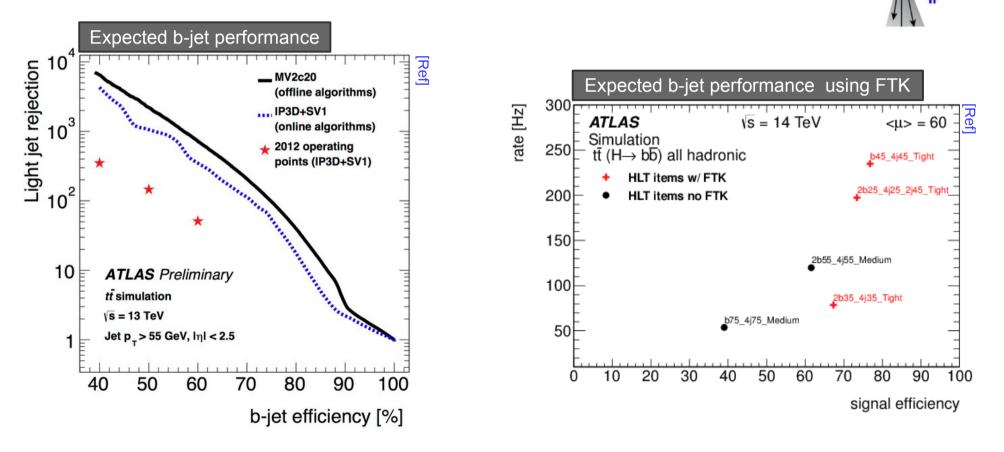
Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

Tau Trigger Performance

- Tau trigger based on offline BDT
 - Ensure performance close to offline
 - Tracking performed in two-stages with narrowing regions to save CPU



Missing Energy Trigger Performance


• Several 'flavours' of MET in use at the trigger

- Default cell-based algorithms with two-sided two-sigma noise suppression
- Topo-cluster based algorithm (tc)
- Jet-based algorithm with soft object correction (mht)
- + variants with different calibration and pileup subtraction
- Best performing MET algorithm is analysis dependent
 - Will maintain most of them as negligible impact for total rate and CPU cost
 - Important to compare performance for equal rate triggers

Expected performance of the b-jet Trigger

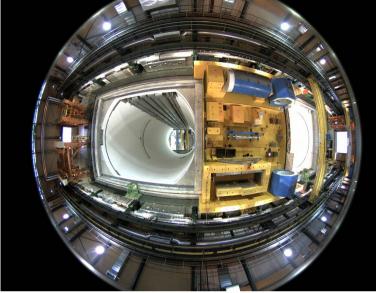
- Run-2 b-jet trigger has been completely rewritten
 - Use same tagging algorithm as offline (MV2c20)
 - Track finding and primary/secondary vertexing heavily optimized for CPU
 - Will make heavy use of L1Topo and FTK
 - Reduce input rate by applying topological selection already at L1
 - Use FTK tracks for primary vertex finding

Displaced

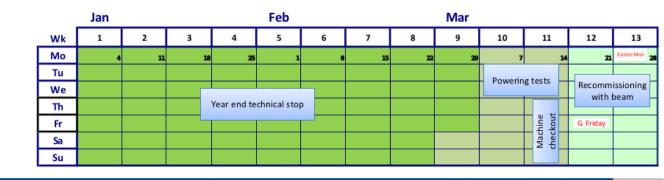
Tracks

Secondary Vertex

Primary


Vertex

Plans for Year-End-Technical-Stop and 2016


Repairs and upgrades continue

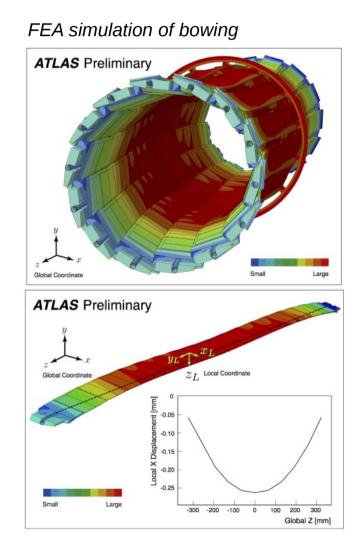
- New readout readout system for 2nd layer of Pixel detector
 - To prepare for higher pileup
- Repair a damaged bellow of the toroid endcap magnet
 - Requires opening of one side of ATLAS
- Standard maintenance work on all detectors

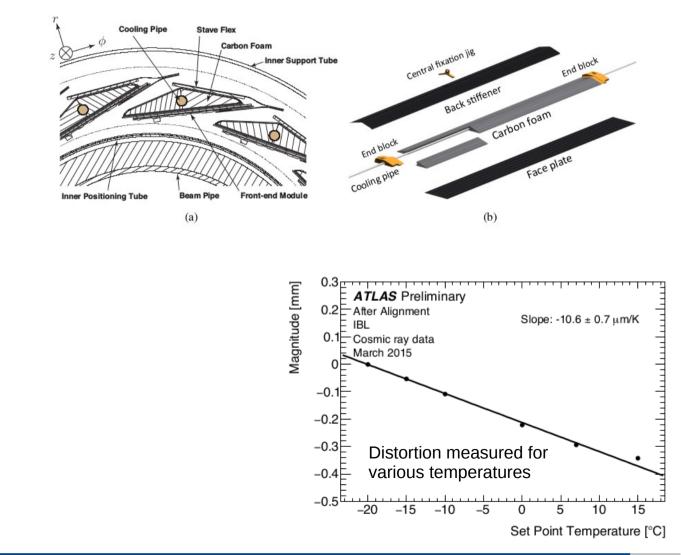
- Full reprocessing of 2015 data and MC underway
 - Allows for a coherent Run-2 dataset
- During 2016 full commissioning of
 - Fast Tracker (FTK)
 - Provides full event tracking for the HLT
 - L1Topo
 - Topological selection at L1

One access shaft to ATLAS cavern open (Jan 7th)

Conclusions

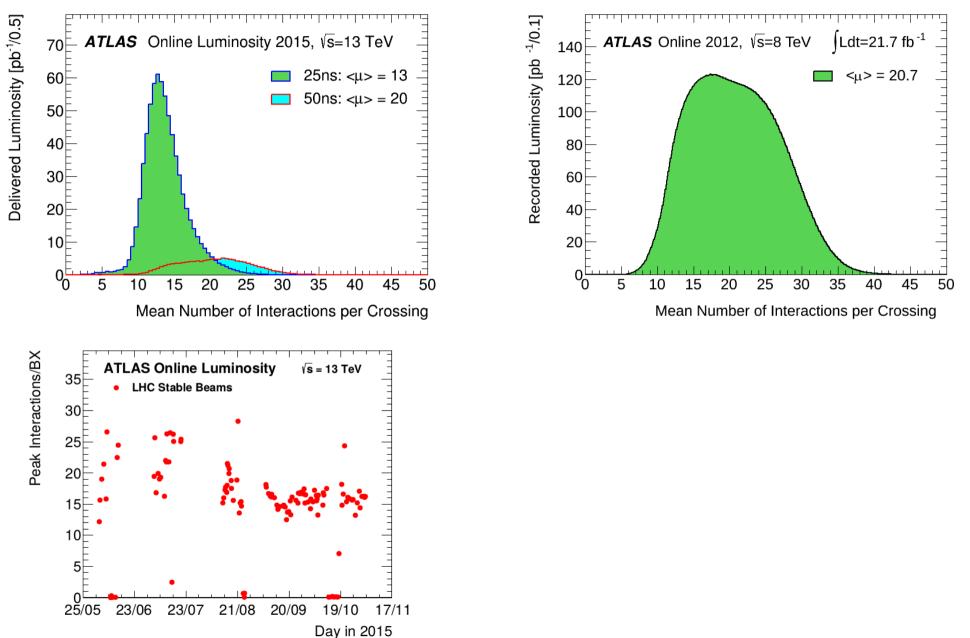
- The restart after the long shutdown and data taking through out 2015 has been very successful
- Despite the challenging conditions, the data taking efficiency and system stability has already reached a level comparable to the end of Run-1
- ATLAS is ready for more data and higher luminosities in 2016
- Many physics results are presented this week



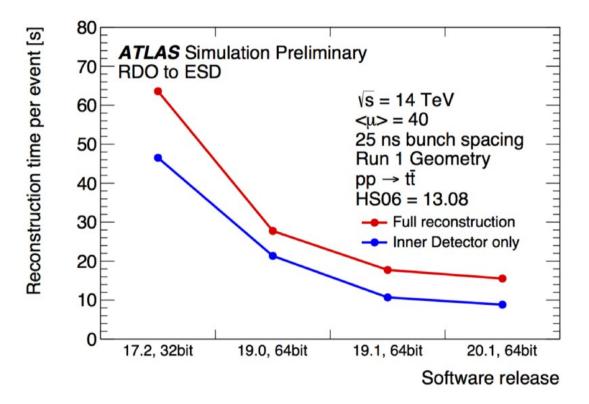


IBL – Bowing due to temperature variations

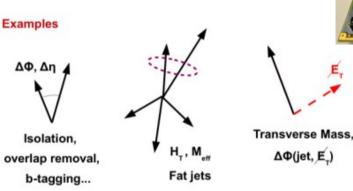
Detailed investigation of IBL bowing


- Full report available: https://cds.cern.ch/record/2022587
- Bowing occurs in the -phi direction due to different thermal expansion coefficients of the bare stave and the polyimyde flex bus line

Pileup distributions


Mean number of interactions for 25ns, 50ns in run-1 and run-2

Frank Winklmeier • ALTAS Trigger and Detector Performance • HEP2016 • 8 Jan 2016

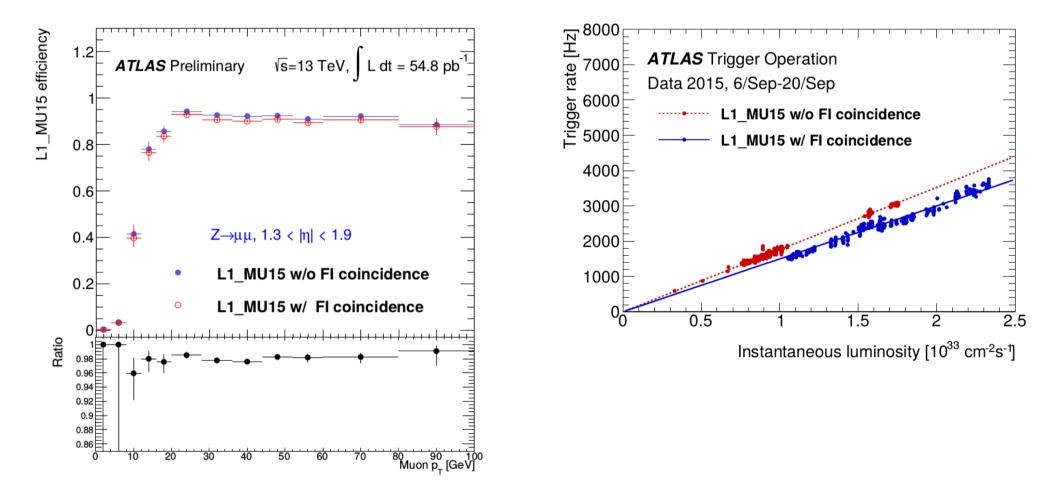

Reconstruction improvements

- Reduction in reconstruction time during LS1
 - More than factor of 3 speed improvements, mainly in ID tracking
 - Crucial for handling the higher HLT output rate and higher pileup later in Run-2

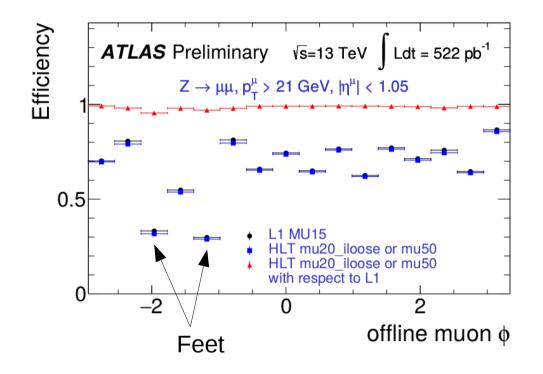
Level-1 Topological Processor/Trigger

- Completely new piece of Level-1 hardware
 - Programmable trigger selections (FPGA)
 - Receives input from L1Calo and L1Muon
 - Applies selection on trigger objects
- Possible selections
 - Angular cuts (DR, Df, Dh)
 - Invariant mass cuts
 - Object refinements
 - etc.
- Essential for higher lumino
 - Will allow us to keep the L1 thresholds low while not exceeding 100 kHz
- In commissioning...
 - Very complex piece of hardware
 - First trigger algorithms working as expected
 - Will be used during 2016 data-taking

Muon Detectors

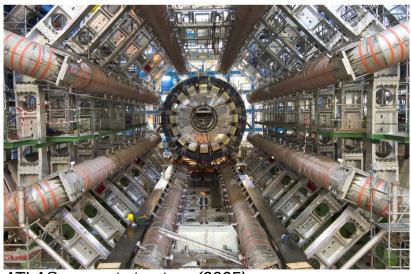

• CSC

- New ATCA-based readout operating nicely at 100 kHz
 - Absolutely essential for trigger operations in Run-2
- Several layers show sparking during collisions
 - two chambers show several broken wires (1 out of 4 layers lost)
 - Low voltage has been reduced slightly to prevent sparking
- RPC
 - Extensive repair campaign for gas leaks in LS1
 - Commissioning of new trigger towers (feet region) is ongoing
- TGC
 - Added Inner station coincidence to reduce trigger rates (see later)
 - Implemented veto for noise bursts (relevant for lumi > 5e33)
- MDT
 - Double-link readout for innermost stations to prevent saturation during Run-1
 - Alignment based on Toroid-off run taken in July during LHC ramp up
 - Preliminary alignment already good to O(50µm) in the barrel and O(100µm) in the endcap



TGC EI/FI coincidence logic

- Significant rate reduction with minimal loss in efficiency
 - >98% efficient with 15% rate reduction at 2.5e33 (more at higher lumi)


Muon barrel trigger efficiency

- RPC chambers in feet region
 - Trigger electronics installed and commissioned
 - Was post-poned to LS1 during construction phase
 - Will be fully operational for 2016 data-taking
 - Will increase trigger efficiency in this region to 60-70%

The feet of ATLAS (2004)

ATLAS support structure (2005)