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The SM fermions gauge invariant kinetic term:

∑

f=Q,ℓ,u,d,e

Ψ̄f Df6 Ψf

Only five Df6 for 15 fermions.
Formally: GF = U(3)5 invariance.
Fermions replicate in triplets.

Is this fact illusory, incidental, or fundamental ?

ILLUSORY: In a complete theory all fermions are distinguished.
Incomplete knowledge of the fund. set of QN (FN-models).

INCIDENTAL: GF broken explicitely by Yukawas: this is the SM .

FUNDAMENTAL:Ψf∈ 3-dimensional irreps of GF : [GF , GSM ] = 0

No multiplet structure in the spectrum: ⇒ SSB
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Flavour symmetry: GLR = SU(3)L × SU(3)R.

See if the the most general GLR invariant V (Y ) admits minima
〈Yaa〉 ∼ (y1, y2, y3) with a hierarchical structure y1 ≪ y2 ≪ y3.

– At tree level one promising vev configuration 〈Y 〉0 ∼ (0, 0, 1) is obtained.
[Little group G〈Y 〉 = SU(2)L × SU(2)R × U(1)]

– However, no type of perturbation [loops, D>4 eff.opts.] can lift the zeroes

〈Y 〉0
to
−→ (ǫ′, ǫ, 1) and break further G〈Y 〉.

– The breakingGLR → U(1)2 must occur already at tree level!

– This can be achieved adding reducible scalar representations: Y + (ZL, ZR).
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See if the the most general GF invariant V (Yu, Vd) admits minima
with VCKM = 〈V〉 ≈ I3×3, and small but nonvanishing V

i6=j
CKM 6= 0.

– At tree level VCKM = I (good as a first approx.) [or VCKM ∼ I-anti-diagonal]

– No perturbation can lift the off-diagonal zeroes and yield V i6=j
CKM 6= 0

– We need four non-trivial “directions” in LH flavour space
– Enlarge the number of reps. Yu,d + (ZQ1

, ZQ2
)∼(3,1,1) [+ RH (Zu, Zd)]

3. By augmenting V (Yu, Yd) −→ V (Yu, Yd;ZQ1
, ZQ2

, Zu, Zd)

– The whole set {Yu, Yd, VCKM , δCP�} can be reproduced
without introducing any hierarchical parameter
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The GF invariant potential: V (Y ) = V [T (χ), A(χ),D(χ)]
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V = 1
Λ4 V̂ = λ

[
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2λ

]2

+ λAA+ µ̃D + µ̃∗D†
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2µ cos δ̃ · D

〈T 〉 = m2

2λ ;







maxA : 〈χ〉s=(u, u, u)

A = 0 : 〈χ〉h=(0, 0, u)
;







maxD : 〈χ〉s=(u, u, u)

D = 0 : 〈χ〉′=(0, u′, u′)

(1): λA < 0: ⇒ Amax, Dmax, 〈δ̃〉 = π, 〈χ〉s SU(3)×SU(3)→SU(3)

(2): λA > 0: ⇒







µ2

m2 > F(λA

λ ) : Dmax, 〈δ̃〉 = π, 〈χ〉s

µ2

m2 < F(λA

λ ) : A=D=0 (〈δ〉 =?), 〈χ〉h

V admits hierarchical vacua 〈χ〉h=(0, 0, u) !
[
SU(3)×SU(3)→SU(2)×SU(2)×U(1)

]
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〈χ〉h = (0, 0, 1) → 〈χ〉ǫ = (
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D
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, ǫA, 1)

We have computed V1 (ref.[2]): (0, 0, 1) and (1, 1, 1) remain unperturbed!
[No further breaking of little groups Hh,s : SU(2)×SU(2)×U(1) & SU(3) occurs]

Origin of this stability ? Georgi & Pais theorem (PRD16 (1977) 3520): A reduction
of the tree level vacuum symmetry via loop corrections can only occur if there
are additional (non-NGB) massless scalars in the tree approximation.

Expand the vev vector v = v0 + εv1 + . . .

Stepwise breaking means: T · v0 = 0 & T · v1 6= 0
From Goldstone Theorem: 0 = M2 T v = M2 (T · v0) + εM2

0 (T · v1)

Examples of theories with non-NGB massless scalars at tree level:

VCW = λφ4 (all states are massless at tree level)
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Other impediments to reproduce the hierarchy

In Ref.[2] [J.R. Espinosa, C.S. Fong, EN] it was shown that:

– Stepwise breaking cannot be triggered by perturbations from opts. of
higher dimension either (unless there are additional massless states in the ren. approx.)

– Non-perturbative effects can at most yield as smallest little group
Hǫ=SU(2)×U(1) ⇔ 〈Y 〉=(a, a, b) unless ∂V

∂T
= ∂V

∂A
= ∂V

∂D
=0

CONCLUSION: GF → Hǫ breaking should occur already at the tree level!
[V (Y ) potential is too simple. We need additional scalar reps.]

A hierarchy 〈χ〉ǫ=(ǫ′, ǫ, 1) and GF → Hǫ can be obtained by adding scalars in
the fundamental of each SU(3)Q×SU(3)q factors: ZQ=(3,1), Zu=(1,3).

[Michel-Radicati theorem (GF → Hmaximal) only applyes to irreducible SU(3)×SU(3)representations (Y )]
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Only one term is relevant when coupling the u and d sectors

V ⊃ λudTud with Tud=Tr(YuY
†
uYdY

†
d )=Tr

(

V † χ2
uV χ2

d

)

and V = VuV
†
d

a unitary matrix of fields with vev: 〈V 〉 = VCKM

With only two “directions” Yu and Yd in SU(3)Q flavour space there is only one
relative “angle”. Then, if λud < 0, V (Yu, Yd) is minimized for χ

u,d aligned (↑↑)

and VCKM ∝ I [if (λud > 0) min. occurs for χ
u,d anti-aligned (↑↓) ].

There are no non-vanishing mixings [Anselm & Berezhiani, NPB484,97 (1977)]

This suggests a way towards the construction of a viable scalar potential:

"INTUITIVELY": We need at least four “directions” in SU(3)Q flavour space to
‘define’ three relative “angles”. [i.e.: add more scalar reps.]
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– Attractive/repulsive: Hermitian monomials: α|Y Z|2: α < 0(> 0) Y -Z (anti)alignment,
– Always attractive: non-Hermitian monomials: Z†

QYuZu +H.c. = 2|Z†
QYuZu| cosφ

2. Divide V (Yu,d, {Z})=VI+VAR+VA and study the flavour relevantparts VAR and

VA⊃
(

µqDq+νiqZ
†
QiYqZq

)

+H.c.

Strong hierarchies and small mixings arise dinamically [without hierarchical parameters].

CP-violation: VA contains 4 physical complex phases. At the minimum,
one nonvanishing phase δCP� remains in 〈V〉 = VCKM .
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Assuming that the SM fermions belong to triplets of a fundamental flavour
symmetry GF =SU(3)×SU(3)×. . . spontns. broken by “Yukawa fields”:

1. The general renormalizable potential for Yu,d admits hierarchical vacua
〈χ〉∝ (0, 0, 1) & VCKM∝ I . (The 0 are stable w. respect to perturbations.)

2. Adding one L-multiplet ZQ = (3,1,1) (and two R-multiplets Zu,d) yields
〈χu,d 〉∼ (ǫ′, ǫ, 1), one mixing angle, and a CP-conserving ground state.

3. The set of scalar field
{
Yu, ZQ1

, Zu; Yd, ZQ2
, Zd

}
yields the Yukawa

hierarchies, the three nontrivial CKM mixings, and one δCP� phase.
The observed hierarchies and VCKM can be reproduced.

4. All hierarchical suppressions are dynamical (as opposite to parametric),
and do not require any particularly small number in V (Yq, {Z}).
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One numerical example

With these inputs:

µq = ν1q = ν2q = v/10, m2
12 = 0.15 v2,

γud = 0.81, η12 = 0.1, λ12 = 1.27,

φγud = 0.98π, φη12 = 0.92π, φν2q = 0.95π.

and all other parameters set to 1 (or to −1), we obtain:

|Ŷu| = v diag (0.0003, 0.009, 1.4) ,

|Ŷd| = v diag (0.0007, 0.02, 1.2) ,

K = VCKM =






0.974 0.223 0.027

0.224 0.974 0.042

0.017 0.046 0.999




 ,

J = Im
(
KjkKlmK∗

jmK∗
kl

)
= 2.9× 10−5.
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