

Progress in reconstructed jet measurements with the PHENIX detector at RHIC

Dennis V. Perepelitsa (for the PHENIX Collaboration) Brookhaven National Laboratory

8 January 2016
Valparaiso, Chile
6th International Workshop on High Energy
Physics in the LHC Era

- Most abundant, fundamental final-state QCD observable
- Approximate relationship to hard parton-parton kinematics
- Increased kinematic reach over single hadron measurements

Jets in heavy ion collisions

future of jets in HI at RHIC

> see talk by R. Reed

PH

ENIX

jets in HEP

Phys. Rev. D86 (2012) 014022

- Standard tool in HEP, but challenging in heavy ion collisions due to large, fluctuating underlying event
 - → in nuclear collisions at the LHC, technical challenges overcome (and rewards reaped) only after substantial effort
 - → in this talk, *progress in jets from PHENIX experiment at RHIC*

Small (cold?) collision systems

Salgado et al., hep-ph/1105.3919 example of different nuclear PDF sets

PHENIX, PRL 111 (2013) 212301 non-zero v_2 for high- p_T hadrons?

- Basic way to characterize partonic structure of any hadronic collision system
 - → modification of PDFs in nuclei
 - → benchmark any initial state effects for jet quenching in A+A
 - → search for hot "QGP"-like energy loss in central collisions

Large (hot?) collision systems

- Parton shower develops <u>in evolving QGP medium</u>
 - → internally-generated, multi-scale probe of QGP properties
 - → jets are high-level physics objects: can examine how rates, structure, correlations, etc. are modified
 - → key component of future "sPHENIX" program at RHIC

PH%ENIX detector

- Electromagnetic calorimeters with ≈18λ (PbSc) or ≈14λ (PbGI)
- Drift & pad chambers for measuring charged-particle tracks
 - ⇒ both subsystems cover $|\eta| < 0.35$, with two $\Delta \phi = \pi/2$ Arms
- **Beam-beam counters** (2.1 < η < 3.8) provide MB event definition and centrality classification
- Online hardware-based trigger on energy deposit in EMCal

Analysis overview

- Jets in modest-aperture detector w/o hadronic calorimeter
 - → non-trivial experimental challenges (<u>and opportunity!</u>)
- Cluster EMCal energy deposits + charged-particle tracks
 - → jet core required to be away from detector edge
 - → strict run-level, particle-level, jet-level QA to ensure *good measurement of jet energy*
- GEANT simulation of detector response & embedding into minimum-bias heavy ion events
- Capture ≈0.65-0.70 of jet momentum on average
 - → 25%"resolution" from fluctuations in (mostly unmeasured) neutral hadronic component
 - → correct spectra *for detector effects* with unfolding procedure

Jet results from PHENIX

- Two new results shown at Quark Matter 2015
- d+Au and p+p jet spectra (2008 data)

- → nucl-ex/1509.04657, submitted to PRL
- → R=0.3 anti-k_t algorithm, <u>establish pQCD baseline</u>
- Cu+Au and p+p jet spectra (2012 data)
 - → Preliminary measurement, R=0.2 anti-k_t algorithm due to demands of HI environment

→ first look at inclusive suppression of full jets

p+p collisions

Jet spectra in p+p collisions

- p+p spectra: compare favorably with NLO pQCD calculation
 - → validates jet reconstruction & correction procedure

d+Au collisions

Centrality in d+Au collisions

- Total charge Q in Au-going beam-beam counter (-3.8 < η < -2.1) used to characterize centrality
- Glauber Monte Carlo simulation of d+Au collisions + model dN/dQ distribution as scaling with N_{coll}
 - \rightarrow estimate nuclear overlap factor T_{dAu} for classes of d+Au collisions
 - → previously successful with hard and soft observables

Jet yields in d+Au

• **d+Au per-event yields**: first publication of jet production in asymmetric systems at RHIC

Minimum bias jet rate

• In centrality-integrated collisions, $R_{dAu} = 1$

Minimum bias jet rate

 $R_{dAu} = dN^{d+Au}/dp_T$ / $T_{dA} \times d\sigma^{p+p}/dp_T$

- In centrality-integrated collisions, $R_{dAu} = 1$
 - compares favorably to global nuclear PDF analyses
 (EPS09) within uncertainties

Minimum bias jet rate

 $R_{dAu} = dN^{d+Au}/dp_T$ / $T_{dA} \times d\sigma^{p+p}/dp_T$

- In centrality-integrated collisions, $R_{dAu} = 1$
 - compares favorably to global nuclear PDF analyses
 (EPS09) within uncertainties
 - → within an initial state E-loss calculations, favors only small parton ↔ nuclear material momentum transfer

• Suppression of jet rate in **central 0-20%** (large N_{coll}) events

- Suppression of jet rate in central 0-20% (large N_{coll}) events
 - comparable with initial state E-loss calculation?

- Suppression of jet rate in central 0-20% (large N_{coll}) events
 - comparable with initial state E-loss calculation?

- Suppression of jet rate in **central 0-20%** (large N_{coll}) events
 - → comparable with initial state E-loss calculation?
- Enhancement in 40-60% and 60-88% (small N_{coll}) events
 - → very challenging to explain within existing frameworks... 20

Non-trivial deviations from $R_{dAu} = 1!$

Deviations grow with $p_{T...}$

- Suppression of jet rate in **central 0-20%** (large N_{coll}) events
 - comparable with initial state E-loss calculation?
- Enhancement in 40-60% and 60-88% (small N_{coll}) events
 - → very challenging to explain within existing frameworks... 21

Reconciling these pictures?

- Occam's Razor: unlikely to be a coincidence between two unrelated suppression/enhancement effects
- Idea: <u>jet production unmodified</u>, but <u>multiplicity in Augoing direction is modified</u> in <u>jet events</u>
 - \rightarrow e.g. jet events merely re-rearranged in centrality, so minimum-bias $R_{dAu} = 1$ by construction

Centrality w/ hard processes

- Could this be a bias or auto-correlation between the centrality signal and the presence of a hard scattering?
 - ⇒ separate PHENIX publication to address exactly this point with p+p data and d+Au simulation
- Conclusion: there is a small bias which, when corrected for, <u>magnifies the results</u>, even for very high-p_T processes

Reconciling these pictures?

- Physics bias affects the centrality signals for high- p_T jet events
 - → not a trivial bias which arises "just" from a feature of p+p collisions
 - → somehow the *presence of the nucleus* is important...

Connection to hadron physics?

- One idea: this is a consequence of proton color fluctuations at collider energies
 - → nucleon configurations with a high-x parton (≥0.1) are different than "typical" configurations
 - → interact more weakly than average, fewer other partons, smaller transverse size, etc.
 - ⇒ see M. Strikman, DVP, et al. hep-ex/1409.7381, accepted by PRC RC
- Related to: hadronic cross-section fluctuations, pointlike configurations, color transparency, etc.

"Shrinking proton" picture

- Geometric interpretation: as these compact configurations traverse the large nucleus, they <u>strike fewer nucleons</u>
 - → so peripheral $R_{dAu} > 1$, central $R_{dAu} < 1$
- Large nucleus acts as a filter on the transverse nucleon size
 - ⇒ larger deuteron-x (nuclear-x irrelevant) ⇒ more compact configurations ⇒ larger deviations from $R_{dAu} = 1$

Analogous LHC results

- Same modification pattern, in the same Bjorken-x range
- Modifications to the R_{pPb} / R_{CP} shown to scale only with <u>proton-x</u> and not depend on nuclear-x

Same (universal) hadron physics at RHIC and the LHC?

New angle on previous data?

- Strong *centrality dependence* in forward hadron and dihadron production in d+Au
 - \rightarrow even though $\langle b \rangle$ does not change so much
 - → attributed by many to low nuclear-x effects (CGC?), but kinematic region also associated with large deuteron-x
- My two cents: there's an overall suppression, but most of the centrality "dependence" is from large x_d , **not** small x_{Au} 29

Cu+Au collisions

Jet spectra in p+p and Cu+Au

- For preliminary results, arbitrary normalization, but <u>p+p-to-Cu</u> +Au normalization is fixed
- Expanded systematics for low-p_T jets in most central events 31

Jet suppression in Cu+Au

 $Cu+Au\ yield$ $R_{AA} = dN/dp_T$ $/\ T_{AA} \times d\sigma/dp_T$ $nuclear\ p+p$ $overlap\ x-sect.$

- Differential, centrality-dependent suppression of N_{coll} -scaled yield
 - \rightarrow peripheral events just consistent with $R_{AA} = 1$
 - → factor of 2 suppression in central events
- Interestingly, flat with p_T

Jet suppression in Cu+Au vs. Npart

- Another look at the N_{part}-dependence of suppression
- No p_T dependence within sensitivity over this kinematic range

First comparisons to theory

Using SCET_G calculation in hep-ph/ 1509.07257

- Cu+Au system is relatively novel, more calculations welcome
 - quantitatively in line with state-of-the-art jet quenching calculations

Summary

- Progress on jet measurements in small and large systems with PHENIX detector
 - → good guidance for future heavy ion jet program at RHIC
- Jet rate in p+p and minimum bias d+Au collisions establish pQCD / nPDF baseline
 - → limits on initial state energy loss in new regime
- Surprising, unexpected centrality dependence
 - → one possibility: are we sensitive to the fact that high-x nucleons are "smaller" than average?
- Preliminary measurement of a centrality-dependent suppression of narrow-cone jets in Cu+Au collisions