LHC dijet limits on $0\nu\beta\beta$

Juan Carlos Helo

University Santa Maria, Valparaiso, Chile

Based on:

J.C. Helo, M. Hirsch, Phys.Rev. D92, 7, 073017.

BLV-2015, 29/04/2015 - p.1/10

 \mathcal{I} . Introduction to $0\nu\beta\beta$:

 ${\cal II}. LHC @ 0 \nu \beta \beta$

 $\mathcal{III}.$ Conclusions

Lepton number violation

$$(A,Z) \to (A,Z+2) + 2e^{-1}$$

Neutrino Mass Mechanism

- Sensitive to extensions of SM: Left-Right, SUSY RPV, LQ, Sterile neutrinos, Color sextet diquarks, ...etc.
 For a review: Deppish et al. Arxiv: 1208.0727
- Schether-Valle Theorem: Observation of $0\nu\beta\beta$ implies neutrinos are Majorana Phys. Rev. D. 25 2951 (1982). However it won't be easily interpreted as evidence for any specific model.

Lorentz-invariant description

Graphically:

 \Rightarrow (b) long-range part: \Rightarrow (d) short-range part: H. Päs et al. PLB453 (1999) H. Päs et al. PLB498 (2001)

Dec. of dim-9 op. Bonnet et al. JHEP03 (2013) 055

Short Range Examples

Diquark Model: Bonnet et al. JHEP03 (2013) 055

LR symmetric model: $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

BLV-2015, 29/04/2015 - p.5/10

Example: $W_R @ LHC$

$0\nu\beta\beta: dd \rightarrow uue^-e^-$ CMS (and ATLAS) with $\sqrt{s} = 8$ TeV: Non-observation gives stringent limits on short-range W_R diagrams for $0\nu\beta\beta$ decay.

Keung & Senjanovic, 1983 Phys. Rev. Lett. 50, 1427 Signal:

di-lepton + jets, **no** $\not \!\!\! E_T$

Example: $W_R @ LHC$

 $m_N = 1 TeV.$

Example: $W_R @ LHC$

Example: S^{DQ} @ LHC

 $0\nu\beta\beta:dd\to uue^-e^-$

¹⁴ 16 18 20 BLV-2015, 29704/2015 – p.9/10

 10^{-2}

 10^{-3}

2

4

6

8

10

 $m_{DQ}(TeV)$

12

Conclusions

 \Rightarrow We have discussed how upper limits on dijet cross sections, derived from LHC data, can be used to constrain the short-range part of the $0\nu\beta\beta$ decay amplitude.

⇒ We have concentrated on two example models: (a) minimal left-right symmetry and (b) a diquark model with LNV. For both setups, the LHC dijet data provides constraints complementary to those derived from the LNV searches.

 \Rightarrow We have also estimated the impact of future LHC data. Current dijet limits provide already interesting constraints on $0\nu\beta\beta$ decay, future limits will rule out measurably half-lives of double beta decay ($T^{1/2} \leq 10^{27} yr$), except in some well-defined regions of parameter space

 \Rightarrow We note that, while we have concentrated on two particular example models, similar constraints will apply to any short-range contribution to $0\nu\beta\beta$ decay in which a state coupling to a pair of quarks appars.