A natural explanation for large neutrino mixing

Saurabh Gupta

Instituto de Física, Universidade de São Paulo

Work done in collaboration with
G Rajasekaran, R Srivastava & G Abbas
Phys. Rev. D 89, 093009 (2014)
Phys. Rev. D 91, 111301 (2015)

 6^{th} International Workshop on High Energy Physics in the LHC Era, Valparaiso, Chile

<u> </u>	~ · ·		
Saura	-unta i		5.21
Saura	 Gubta I		~
		· -	- /

(日)

Outline

Introduction

- 2 High Scale Mixing Unification Hypothesis
- 3 Majorana case
- Oirac Case
- Scale of HSMU and SUSY
- 6 Conclusion and Future Work

э

・ロト ・回ト ・ヨト ・ヨト

Outline

Introduction

- 2 High Scale Mixing Unification Hypothesis
- 3 Majorana case
- 4 Dirac Case
- 5 Scale of HSMU and SUSY
- 6 Conclusion and Future Work

æ

ヘロト ヘ部ト ヘヨト ヘヨト

Introduction

- Neutrinos are probably the most mysterious and ill understood of all known particles
- In past neutrinos have thrown up quite a few surprises: They still keep on surprising us !!
- Recent measurements conclusively show $\theta_{13} \neq 0^1$: The latest "surprise"
- \bullet Measurement of θ_{13} was long awaited: Provides crucial test of several candidate models
- Is there a "natural" way of understanding non-zero and "relatively large" $\theta_{13}?$
- In this talk we discuss one such possibility: High Scale Mixing Unification (HSMU)

¹T2K, MINOS, DAYA-BAY, RENO and Double Chooz Collaborations (a) (a) (b) (b) (c) (c

Current Experimental Scenario

• Global Fits for neutrino oscillation parameters²:

Quantity	Best Fit ± 1 - σ	3- σ Range
$ heta_{12}/^{\circ}$	$33.36^{+0.81}_{-0.78}$	31.09 - 35.89
$ heta_{23}/^{\circ}$	$40.0^{+2.1}_{-1.5} \oplus 50.4^{+1.3}_{-1.3}$	35.8 - 54.8
$ heta_{13}/^{\circ}$	$8.66\substack{+0.44\\-0.46}$	7.19 – 9.96
$\delta_{ m CP}/^{\circ}$	300^{+66}_{-138}	0 - 360
$\Delta m_{21}^2 \ (10^{-5} \ {\rm eV}^2)$	$7.50_{-0.19}^{+0.18}$	7.00 - 8.09
$\Delta m^2_{31} \; (10^{-3} \; {\rm eV^2}) \; ({\sf N})$	$2.473_{-0.067}^{+0.070}$	2.276 - 2.695
$\Delta m^2_{23} \; (10^{-3} \; {\rm eV}^2)$ (I)	$2.427^{+0.042}_{-0.065}$	2.242 - 2.649

- Averaged electron neutrino mass (m_{β}) : MAINZ, TROITSK $m_{\beta} < 2$ eV, KATRIN sensitivity ≈ 0.2 eV
- Neutrinoless Double Beta Decay: Not Observed (Effective Majorana mass $m_{\beta\beta} < 0.38 \text{ eV}$)

²M. C. Gonzalez-Garcia, etal. JHEP 1212, 123 (2012) $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle$

Saurabh Gupta (IF-USP)

- Despite tremendous amount of theoretical and experimental research our understanding of neutrinos is still poor
- Nature of neutrinos: Dirac or Majorana?
- Mass of neutrinos: Hierarchical or quasi degenerate?
- Mass Hierarchy: Normal or Inverted?
- CP violation: $\delta_{\rm CP}$?
- Octant of θ_{23} : $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
- Why lepton and quark mixing parameters are so different?

イロト 不得 トイヨト イヨト 二日

Outline

2 High Scale Mixing Unification Hypothesis

э

ヘロト ヘ部ト ヘヨト ヘヨト

Unification

- Unification: An old idea and quite fruitful notion
- Has lead to much advancement in our understanding: Electro-Magnetism, Electro-Weak force etc
- Current research: Unification of various fundamental forces
- Grand Unified Theories (GUTs): Unification of gauge couplings
- Key Ingredient: Quarks and Leptons in same multiplet
- Flavor structure of quarks and leptons: Not totally disconnected
- Interesting possibility: "High Scale" Unification of CKM and PMNS mixing parameters³

Saurabh Gupta (IF-USP)

Unification of CKM and PMNS mixing parameters

- How is this possible? Numerically they are so different from each other!!
- Maybe unification at higher scales e.g GUT scale?
- Quark mixing angles don't change much (SM/MSSM RG running) due to hierarchical nature of quark masses
- What about neutrino mixing angles?
- Large radiative magnification of PMNS angles is required!
- Can be realized within Minimal Supersymmetric Standard Model (MSSM)⁴

⁴R. N. Mohapatra, M. K. Parida and G. Rajasekaran, Phys. Rev. D **69**, 053007 (2004), hep-ph/0301234.

Saurabh Gupta (IF-USP)

Outline

1 Introduction

2 High Scale Mixing Unification Hypothesis

3 Majorana case

Dirac Case

- 5 Scale of HSMU and SUSY
- 6 Conclusion and Future Work

э

ヘロン 人間 とくほと 人ほとう

High Scale Mixing Unification Hypothesis General Framework

- Model independent approach: Assume HSMU at some "High Scale"
- Details of the "High Scale" theory not needed
- Below High Scale: MSSM + Type-I seesaw mechanism
- Effective left handed neutrino mass matrix

$$m_{\nu} = -M_D (f v_R)^{-1} M_D^T$$

• Right handed neutrinos integrated out below their mass threshold

High Scale Mixing Unification Hypothesis General Framework

Below seesaw scale: Effective dimension five neutrino mass operator

$$\mathcal{L}_{MSSM+\kappa} = \mathcal{L}_{MSSM} - \frac{1}{4} \kappa_{ij} \mathbf{l}_{a}^{i} \varepsilon^{ab} \mathbf{h}_{b}^{(u)} \mathbf{l}_{c}^{j} \varepsilon^{cd} \mathbf{h}_{d}^{(u)} \Big|_{\theta\theta}$$

- Testing HSMU: Need to run down the masses and mixing parameters from High Scale to low scale (M_Z)
- RG running between High Scale and seesaw scale: Using standard MSSM RG equations within framework of Type-I seesaw mechanism
- Below seesaw scale: RG running with dim-5 operator added to MSSM
- Below SUSY breaking scale: RG running with dim-5 operator added to SM

イロト 不得 トイヨト イヨト 二日

RG equations for masses

$$\frac{\mathrm{d}m_i}{\mathrm{d}t} = \frac{m_i}{16\pi^2} \left[\alpha + C f_\tau^2 F_i \right] \,,$$

where $t = \ln(\mu)$, μ is the renormalization scale and F_i (with i = 1, 2, 3) are defined as

$$\begin{array}{rcl} F_1 &=& 2s_{12}^2\,s_{23}^2 - s_{13}\,\sin 2\theta_{12}\,\sin 2\theta_{23}\cos \delta + 2s_{13}^2\,c_{12}^2\,c_{23}^2\,,\\ F_2 &=& 2c_{12}^2\,s_{23}^2 + s_{13}\,\sin 2\theta_{12}\,\sin 2\theta_{23}\cos \delta + 2s_{13}^2\,s_{12}^2\,c_{23}^2\,,\\ F_3 &=& 2\,c_{13}^2\,c_{23}^2\,. \end{array}$$

In SM and MSSM, α and f_{τ} are

$$\begin{aligned} \alpha_{\text{MSSM}} &= -\frac{6}{5}g_1^2 - 6g_2^2 + \frac{6y_t^2}{\sin^2\beta}, \qquad f_{\tau,\text{MSSM}}^2 = \frac{y_\tau^2}{\cos^2\beta}, \\ \alpha_{\text{SM}} &= -3g_2^2 + 2y_\tau^2 + 6\left(y_t^2 + y_b^2\right) + \lambda, \qquad f_{\tau,\text{SM}}^2 = y_\tau^2. \end{aligned}$$

Here y_f , $(f = \tau, t, b)$ represent the Yukawa coupling, g_i are gauge couplings and λ is Higgs self-coupling in SM.

Saurabh Gupta (IF-USP)

RG equations for mixing angles

$$\begin{split} \frac{\mathrm{d}\theta_{12}}{\mathrm{d}t} &= -\frac{Cf_{\tau}^2}{32\pi^2} \sin 2\theta_{12} \, s_{23}^2 \, \frac{|m_1 e^{i\phi_1} + m_2 e^{i\phi_2}|^2}{\Delta m_{21}^2} + \mathcal{O}(\theta_{13}), \\ \frac{\mathrm{d}\theta_{13}}{\mathrm{d}t} &= -\frac{Cf_{\tau}^2}{32\pi^2} \sin 2\theta_{12} \sin 2\theta_{23} \frac{m_3}{\Delta m_{32}^2 \left(1 + \xi\right)} \\ &\times \quad [m_1 \cos(\phi_1 - \delta) - (1 + \xi)m_2 \cos(\phi_2 - \delta) - \xi \, m_3 \cos\delta] + \mathcal{O}(\theta_{13}), \\ \frac{\mathrm{d}\theta_{23}}{\mathrm{d}t} &= -\frac{Cf_{\tau}^2}{32\pi^2} \sin 2\theta_{23} \frac{1}{\Delta m_{32}^2} \left[c_{12}^2 |m_2 e^{i\phi_2} + m_3|^2 + s_{12}^2 \frac{|m_1 e^{i\phi_1} + m_3|^2}{1 + \xi}\right] \\ &+ \quad \mathcal{O}(\theta_{13}), \qquad \text{Casas NPB}(2000), \text{ Antush JHEP}(2005) \end{split}$$

where δ is Dirac phase, ϕ_1,ϕ_2 are Majorana phases and

$$\begin{split} \xi &= \quad \frac{\Delta m_{21}^2}{\Delta m_{32}^2}, \qquad \Delta m_{21}^2 = m_2^2 - m_1^2, \qquad \Delta m_{32}^2 = m_3^2 - m_2^2, \\ C &= \quad 1 \qquad \text{in MSSM}, \qquad C = -\frac{3}{2} \quad \text{in SM}. \end{split}$$

Saurabh Gupta (IF-USP)

<ロト <回 > < 注 > < 注 > … 注

HSMU: Initial Conditions & Assumptions

- \bullet Assume HSMU realized at GUT scale i.e. $2\times 10^{16}~{\rm GeV}$
- \bullet Choice of seesaw scale: HSMU realized for varied range of seesaw scale [For definiteness $10^{12}~{\rm GeV}]$
- SUSY breaking scale: 2 TeV
- Larger values of $\tan \beta$: Enhanced magnification [We choose $\tan \beta = 55$]
- Dependence on these parameters: Discussed in later part of talk
- Large radiative magnification: Quasi degenerate neutrinos
- Assumed normal hierarchy
- Assumed no CP violation in leptonic sector: Dirac as well as Majorana phases taken zero

Implementing HSMU: Two step process

Bottom - Up

- Start from known values of gauge couplings, quark mixing angles, masses of quarks and charged leptons at low energies (M_Z)
- Use RG equations: Obtain the corresponding values at high energies
- HSMU hypothesis: Take neutrino mixing angles same as the quark mixing angles at the unification scale

• Top - Down

- Neutrino masses at high scale: Unknown parameters
- Determine these three parameters such that: Low energy values of the oscillation parameters i.e. $\Delta m_{12}^2, \Delta m_{23}^2, \theta_{12}, \theta_{23}$ and θ_{13} agree with their present experimental ranges

The RG evolution of neutrino masses m_i

- All masses decrease from unification scale to M_Z .
- RG running of m₃ fastest: Splitting gets narrowed down.
- Acquire nearly degenerate masses at M_Z .

The RG evolution of neutrino mixing angles θ_{ij}

- Hierarchical quark masses: RG running in quark sector is almost negligible
- RG running of leptonic mixing angles $\frac{d\theta_{12}}{dt} \propto \frac{m^2}{\Delta m_{21}^2}$ $\frac{d\theta_{13}}{dt}, \frac{d\theta_{23}}{dt} \propto \frac{m^2}{\Delta m_{32}^2}$
- Quasi-degenerate neutrinos: Large angle magnification in leptonic sector

- ∢ ⊒ →

Numerical results on the evolution of masses and mixing

	I	II	111
$m_1^0(eV)$	0.4196	0.4146	0.4286
$m_2^0(eV)$	0.4230	0.4180	0.4320
$m_3^0(eV)$	0.4843	0.4786	0.4946
$m_1(eV)$	0.3626	0.3582	0.3703
$m_2(eV)$	0.3632	0.3589	0.3709
$m_3(eV)$	0.3668	0.3625	0.3746
$\Delta m^2_{21} (\mathrm{eV}^2)_{RG}$	$4.30 imes 10^{-4}$	$4.49 imes 10^{-4}$	$4.20 imes 10^{-4}$
$\Delta m_{32}^{\overline{2}} (\text{eV}^2)_{RG}$	2.67×10^{-3}	2.62×10^{-3}	2.78×10^{-3}
$M_{\tilde{e}}/M_{\tilde{\mu},\tilde{\tau}}$	1.94	1.84	2.16
$\Delta m^2_{21} (\mathrm{eV}^2)_{th}$	-3.55×10^{-4}	-3.73×10^{-4}	-3.44×10^{-4}
$\Delta m_{32}^{\overline{2}} (\mathrm{eV}^2)_{th}$	-2.74×10^{-4}	-2.16×10^{-4}	-3.82×10^{-4}
$\Delta m^2_{21} (\mathrm{eV}^2)_{tot}$	$7.50 imes 10^{-5}$	$7.58 imes 10^{-5}$	$7.59 imes 10^{-5}$
$\Delta m^2_{32} (\mathrm{eV}^2)_{tot}$	2.40×10^{-3}	2.40×10^{-3}	2.40×10^{-3}
$\theta_{23}/^{\circ}$	54.03	53.93	54.18
$ heta_{13}/^{\circ}$	8.66	8.67	8.67
$\theta_{12}/^{\circ}$	33.36	31.14	35.87

<ロト <回 > < 注 > < 注 > … 注

Testing HSMU: Values of $m_{\beta\beta}$ and m_{β}

- Threshold corrections needed, to obtain Δm^2_{21} within 3- σ range⁵.
- Mean Mass m lie in the range of ($\sim 0.34 0.38$) eV.
- No CP violation: "Effective Majorana mass" $m_{\beta\beta} \equiv \left|\sum_{i} U_{ei}^2 m_i\right|$ and

"Averaged electron neutrino mass" $m_{\beta} \equiv \left[\sum_{i} |U_{ei}|^2 m_i^2\right]^{1/2}$ are approximately same as mean mass

- Present limits:
 - GERDA limit $\longrightarrow (0.2 0.4) \text{ eV on} < m_{\beta\beta} >$
 - EXO-200 limit $\longrightarrow (0.14 0.38)$ eV on $\langle m_{\beta\beta} \rangle = (0\nu 2\beta \text{ decay});$
 - MAINZ, TROITSK limit \longrightarrow (< 2) eV on < m_{β} > (Tritium β decay); KATRIN reach \longrightarrow (0.2) eV
- Predicted values within reach of present experiments: Serve as important tests of HSMU

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

⁵Mohapatra, Parida, Rajasekaran PRD 71(2005)

Octant of θ_{23}

- Since $\frac{d\theta_{13}}{dt}$, $\frac{d\theta_{23}}{dt} \propto \frac{m^2}{\Delta m_{32}^2}$: RG evolution of θ_{13} and θ_{23} correlated
- All other oscillation parameters are at their best-fit values.
- Non maximal θ₂₃ i.e. θ₂₃ > 45°: Lies in second octant for the whole 3-σ range of θ₁₃.

・ロト ・回ト ・ヨト ・ヨト

- Shaded regions lie outside 3-σ range.
- For a fixed value of θ_{13} : Effect of variation of θ_{12} on θ_{23} is negligible.

Summary, so far

- HSMU realized for Majorana neutrinos: Requires quasi-degeneracy and normal hierarchy
- Several important predictions:
 - $m_{\beta\beta}$ and m_{β} in range of (~ 0.34 0.38) eV
 - Normal hierarchy
 - Non maximal θ_{23} : Lies in second octant
- These predictions can be tested in present and near future experiments like GERDA, EXO-200, KATRIN, INO, T2K, NO ν A, LBNE, Hyper-K, PINGU

Outline

1 Introduction

- 2 High Scale Mixing Unification Hypothesis
- 3 Majorana case

Oirac Case

- 5 Scale of HSMU and SUSY
- 6 Conclusion and Future Work

э

ヘロン 人間 とくほと 人ほとう

Nature of Neutrinos: Dirac or Majorana?

- One of the most important open questions in neutrino physics: Whether neutrinos are Dirac or Majorana particles
- Current understanding: Dirac neutrinos as plausible as Majorana ones ⁶
- Neutrinoless double beta decay experiments: Dedicated ongoing experiments to determine the nature of neutrinos.
- No conclusive evidence: Neutrinoless double beta decay experiments have not seen any signal so far⁷.
- Instructive to see if HSMU can be implemented for Dirac Neutrinos as well

⁶Murayama PRL (2002), Smirnov hep-ph/0411194, Mohapatra hep-ph/0412099 ⁷Agostini:2013,Auger:2012,Gando:2012,Alessandria:2011 ← □ → ← ♂→ ← ⊇→ ← ⊇→ ← ⊇→

Saurabh Gupta (IF-USP)

High Scale Mixing Unification

HSMU for Dirac Neutrinos

- HSMU hypothesis: More natural for Dirac neutrinos than Majorana neutrinos
- If neutrinos are Majorana particles: The PMNS-matrix has 6 independent parameters; 3-mixing angles, 1-Dirac phase and 2-Majorana phases
- On the other hand CKM-matrix has only 4 independent parameters: 3-mixing angles and 1-Dirac phase
- Clear mismatch between number of parameters on two sides and hence a one-to-one correspondence is impossible
- HSMU for Majorana Case: One has to treat the Majorana phases as free parameters
- HSMU for Dirac Neutrinos: CKM and PMNS mixing parameters can be mapped in a one-to-one correspondence with each other at the unification scale.
- Clear and unambiguous predictions
- Implementing is same as Majorana case.

イロト 不得 トイヨト イヨト 二日

The RG evolution of neutrino mixing angles θ_{ij}

• Quasi-degenerate neutrinos: Large angle magnification in leptonic sector

- ∢ ⊒ →

The RG evolution of neutrino masses m_i

э

< 注入 < 注入 →

The RG evolution of Dirac Phase

э

< 注入 < 注入

Numerical results

- Bottom-up running: $\theta_{12}^{0,q} = 13.02^{\circ}, \ \theta_{13}^{0,q} = 0.17^{\circ}, \ \theta_{23}^{0,q} = 2.03^{\circ} \text{ and } \delta_{CP}^{0,q} = 68.93^{\circ}.$
- Following HSMU, the neutrino mixing parameters at unification scale are taken to be same as those of quark mixing parameters.
- At unification scale, we choose: $m_2^0 = 0.1925 \ eV, \ \Delta m_{21}^2 = 2.960 \times 10^{-4} \ eV^2, \ \Delta m_{32}^2 = 5.718 \times 10^{-3} \ eV^2.$
- Top-down running: $\theta_{12} = 31.20^{\circ}, \ \theta_{13} = 7.22^{\circ}, \ \theta_{23} = 50.35^{\circ}, \ \delta_{CP} = 28.12^{\circ}, \ m_2 = 0.1746 \text{ eV}, \ \Delta m_{sol}^2 = 7.917 \times 10^{-5} \ eV^2 \text{ and } \Delta m_{atm}^2 = 2.399 \times 10^{-3} \ eV^2.$

- All low scale parameters are within their 3- σ range.
- Threshold corrections are NOT required.
- The sum of neutrino masses $\sum m_i = 0.530$ eV, where i = 1, 2, 3. Within the range of PLANCK (2015) data; $\sum m_i = 0.17 0.72$ eV (depending on the choice of priors).
- The "averaged electron neutrino mass" $m_{\beta} = 0.175$ eV (slightly below the present reach of KATRIN experiment).

イロト 不得 トイヨト イヨト 二日

Octant of θ_{23}

• Correlated RG evolution of θ_{13} and $\theta_{23} {:}\ \theta_{23}$ non maximal and in second octant

æ

ヘロン 人間 とくほと 人ほとう

- HSMU can be realized for both Dirac as well as Majorana neutrinos
- Several important predictions for Dirac case:
 - "Averaged electron neutrino mass" m_{β} : Slightly below KATRIN's proposed sensitivity
 - Normal hierarchy
 - Non maximal θ_{23} : Lies in second octant
- These predictions can be tested in present and near future experiments like GERDA, EXO-200, KATRIN, INO, T2K, NOvA, LBNE, Hyper-K, PINGU

Outline

1 Introduction

- 2 High Scale Mixing Unification Hypothesis
- 3 Majorana case

4 Dirac Case

- Scale of HSMU and SUSY
 - 6 Conclusion and Future Work

э

ヘロン 人間 とくほと 人ほとう

- So far we assumed HSMU to be realized at GUT scale
- HSMU does not depend on "details" of GUT scale theory
- Instructive to analyze the effect of variation of HSMU scale
- Similarly SUSY breaking scale and $\tan\beta$ were taken as 2 TeV and 55, respectively
- Important to analyze the dependence of HSMU on these

イロン 人間と イヨン イヨン

Unification Scale Variation

Majorana Neutrinos

• Here, we have taken $M_{SUSY} = 2$ TeV and $\tan \beta = 55$.

- All neutrino oscillation parameter kept fixed to their best fit value
- Bounds from $0\nu\beta\beta$ decay provide tightest constraints on the lowest possible value of HSMU scale [should be above $10^{14}GeV$]
- The shaded regions are excluded by $0
 u\beta\beta$ decay experiments

伺 と く ヨ と く ヨ と

SUSY Breaking Scale Variation

Majorana Neutrinos

- Here, the unification scale = 2×10^{16} GeV and $\tan \beta = 55$.
- All neutrino oscillation parameter kept fixed to their best fit value
- The shaded regions are excluded by $0\nu\beta\beta$ decay experiments
- $\bullet~{\rm HSMU}$ consistent with experimental constraints for SUSY breaking scales lie below $10^6 GeV$

Choice of $\tan\beta$ Majorana Neutrinos

- Here, the unification scale = 2×10^{16} GeV and M_{SUSY} = 2 TeV.
- All neutrino oscillation parameter kept fixed to their best fit value
- The shaded regions are excluded by $0
 u\beta\beta$ decay experiments
- Experimental constraints imply large values of aneta

- ∢ ⊒ →

Scale of HSMU

Dirac Neutrinos

- Here, we have taken $M_{SUSY} = 2 \text{ TeV}$ and $\tan \beta = 55$.
- Present constraints from Tritium Beta decay are rather weak
- The neutrino oscillation data, in particular $\xi = (\Delta m_{sol}^2 / \Delta m_{atm}^2)$, provides tightest constraints on the scale of HSMU [that should be above $2 \times 10^{13} GeV$]

э

SUSY Breaking Scale

Dirac Neutrinos

• Unification scale = 2×10^{16} GeV and $\tan \beta = 55$.

- $\bullet\,$ The upper bound on M_{SUSY} turns out to be around $4\times 10^6\,\,{\rm GeV}$
- Experimental constraints require large values of aneta

- 4 同 6 4 日 6 4 日 6

Outline

1 Introduction

- 2 High Scale Mixing Unification Hypothesis
- 3 Majorana case
- 4 Dirac Case
- 5 Scale of HSMU and SUSY
- 6 Conclusion and Future Work

э

ヘロン 人間 とくほと 人ほとう

• High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility

- It can be realized with both Dirac and Majorana type neutrinos
- It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

イロン 人間と イヨン イヨン

- High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility
- It can be realized with both Dirac and Majorana type neutrinos
- It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility
- It can be realized with both Dirac and Majorana type neutrinos
- \bullet It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility
- It can be realized with both Dirac and Majorana type neutrinos
- \bullet It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

イロン 人間と イヨン イヨン

- High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility
- It can be realized with both Dirac and Majorana type neutrinos
- \bullet It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

- High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility
- It can be realized with both Dirac and Majorana type neutrinos
- \bullet It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

- High Scale Mixing Unification (HSMU) of PMNS and CKM parameters is an interesting possibility
- It can be realized with both Dirac and Majorana type neutrinos
- \bullet It naturally leads to non zero and "relatively large" values of θ_{13} consistent with present global fits
- It leads to several predictions which can be test by present and near future experiments
- The scale of HSMU is roughly same as that of Grand Unified theories
- This opens up the possibility of realizing HSMU through a GUT
- Construction of such a GUT theory will put HSMU on a firmer footing

THANK YOU !!

æ

・ロト ・回ト ・ヨト ・ヨト