# A calculating of the $(s(x) - \overline{s}(x))$ asymmetry in Proton with holographic wave functions Alfredo Vega



In collaboration with
I. Schmidt, T. Gutsche and V.
Lyubovitskij

HEP in LHC era 2016, Valparaíso, Chile

January 8, 2016

## Outline

Introduction

Brodsky - Ma Model

Holographic Light Front Wave Functions

 $(s - \bar{s})$  Asymmetry with Holographic LFWFs





In many cases it is necessary to consider contribution of sea quarks and gluons in order to understand hadron properties



#### Introduction

## Sea quarks in nucleon arise through 2 different mechanism:

- Nonperturbative (Intrinsic).
- Perturbative (Extrinsic).



\* Extrinsic sources of sea quarks. 1



- Arises from gluon radiation to qq̄ pairs.
- Include QCD evolution.
- Strongly peaked at low x.
- Extrinsic sea quarks require  $q = \bar{q}$ . Asymmetries (very small, low x) arise at NNLO order.

<sup>&</sup>lt;sup>1</sup>S. Catani, D. de Florian, G. Rodrigo and W. Vogelsang, Phys. Rev. Lett. **93**, 152003 (2004).

\* Intrinsic sources of sea quarks 2



- Arises from  $4q + \bar{q}$  fluctuations of N Fock state.
- At starting scale, peaked at intermediate x; more "valence-like" than extrinsic.
- In general,  $q \neq \bar{q}$  for intrinsic sea.
- Intrinsic parton distriutions move to lower x under QCD evolution.

<sup>&</sup>lt;sup>2</sup>e.g see F. G. Cao and A. I. Signal, Phys. Rev. D **60**, 074021 (1999).



<sup>&</sup>lt;sup>3</sup>S. J. Brodsky and B. Q. Ma, Phys. Lett. B **381**, 317 (1996).

In the light-front formalism the proton state can be expanded in a series of components as

$$|P
angle = |uud
angle \psi_{uud/p} + |uudg
angle \psi_{uudg/p} + \sum_{qar{q}} |uudqar{q}
angle \psi_{uudqar{q}/p} + \dots$$

It is possible to consider a different light front approach, in which the nucleon has components arising from meson-baryon fluctuations, while these hadronic components are composite systems of quarks. In this case the nonperturbative contributions to the s(x) and  $\bar{s}(x)$  distributions in the proton can be expressed as convolutions

$$s(x) = \int_x^1 rac{dy}{y} f_{\Lambda/K\Lambda}(y) q_{s/\Lambda}igg(rac{x}{y}igg) \quad ext{ and } \quad ar{s}(x) = \int_x^1 rac{dy}{y} f_{K/K\Lambda}(y) q_{ar{s}/K}igg(rac{x}{y}igg)$$

$$s(x) = \int_x^1 rac{dy}{y} f_{\Lambda/K\Lambda}(y) q_{s/\Lambda}igg(rac{x}{y}igg) \quad and \quad ar{s}(x) = \int_x^1 rac{dy}{y} f_{K/K\Lambda}(y) q_{ar{s}/K}igg(rac{x}{y}igg)$$

- $q_{s/\Lambda}$  and  $q_{\overline{s}/K}$  are distributions of s quarks and  $\overline{s}$  antiquarks in the  $\Lambda^0$  and  $K^+$ , respectively.
- The functions  $f_{\Lambda/K\Lambda}(y)$  and  $f_{K/K\Lambda}(y)$  describe the probability to find a  $\Lambda$  or a K with light-front momentum fraction y in the  $K\Lambda$  state.

$$f_{B/BM}(y) = \int \frac{d^2k}{16\pi^3} |\psi_{BM}(y,k)|^2$$

$$q_{s/\Lambda}(x)=\int rac{d^2k}{16\pi^3}|\psi_{\Lambda}(x,k)|^2$$
 and  $q_{ar{s}/K}(x)=\int rac{d^2k}{16\pi^3}|\psi_{K}(x,k)|^2$ 



## Holographic Light Front Wave **Functions**

## Holographic Light Front Wave Functions

## ♦ Basic Idea. 4

Comparison of Form Factors in light front and in AdS side, offer us a possibility to relate AdS modes that describe hadrons with LFWF.

• In Light Front (for hadrons with two partons),

$$F(q^2) = 2\pi \int_0^1 dx \frac{(1-x)}{x} \int d\zeta \, \zeta J_0(\zeta q \sqrt{\frac{1-x}{x}}) \frac{|\tilde{\psi}(x,\zeta)|^2}{(1-x)^2}.$$

In AdS

$$F(q^2) = \int_0^\infty dz \ \Phi(z) J(q^2, z) \Phi(z),$$

where  $\Phi(z)$  correspond to AdS modes that represent hadrons,  $J(q^2, z)$  it is dual to electromagnetic current.

<sup>&</sup>lt;sup>4</sup> S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. **96**, 201601 (2006); Phys. Rev. D **77**, 056007 (2008). 13 of 23

### Holographic Light Front Wave Functions

Considering a soft wall model with a cuadratic dilaton, Brodsky and de Teramond found <sup>5</sup>

$$\psi(\mathbf{x}, \mathbf{b}_{\perp}) = A\sqrt{x(1-x)} \ e^{-\frac{1}{2}\kappa^2 x(1-x)\mathbf{b}_{\perp}^2},$$

and in momentum space

$$\psi(x, \mathbf{k}_{\perp}) = \frac{4\pi A}{\kappa \sqrt{x(1-x)}} \exp\left(-\frac{\mathbf{k}_{\perp}^2}{2\kappa_1^2 x(1-x)}\right).$$

<sup>&</sup>lt;sup>5</sup> S. J. Brodsky and G. F. de Teramond, Phys. Rev. Lett. **96**, 201601 (2006); Phys. Rev. D **77**, 056007 (2008).

A generalizations of LFWF discused in previous section looks like

$$\psi(x,\mathbf{k}_\perp) = N \tfrac{4\pi}{\kappa \sqrt{x(1-x)}} g_1(x) \exp\biggl(-\tfrac{\mathbf{k}_\perp^2}{2\kappa_1^2 x(1-x)} g_2(x)\biggr).$$

You can found some examples in

- S. J. Brodsky and G. F. de Teramond, arXiv:0802.0514 [hep-ph].
- A. V, I. Schmidt, T. Branz, T. Gutsche and V. E. Lyubovitskij, PRD 80, 055014 (2009).
- S. J. Brodsky, F. G. Cao and G. F. de Teramond, PRD 84, 075012 (2011).
- J. Forshaw and R. Sandapen, PRL 109, 081601 (2012).
- S. Chabysheva and J. Hiller, Annals of Physics 337 (2013) 143 152.
- T. Gutsche, V. Lyubovitskij, I. Schmidt and A. V, PRD 87, 056001 (2013).

## Background for a generalization to arbitrary twist

In AdS side, form factors in general looks like

$$F(q^2) = \int\limits_0^\infty dz \, \Phi_{ au}(z) \mathcal{V}(q^2, z) \Phi_{ au}(z),$$

Example: Fock expansion in AdS side for Protons <sup>6</sup>, Deuteron form factors <sup>7</sup>.

- We consider a shape that fulfill the following constraints:
  - At large scales  $\mu \to \infty$  and for  $x \to 1$ , the wave function must reproduce scaling of PDFs as  $(1-x)^{\tau}$ .
  - At large  $Q^2$ , the form factors scales as  $1/(Q^2)^{\tau-1}$ .

<sup>&</sup>lt;sup>6</sup>Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt y A. V, Phys. Rev. D86 (2012) 036007; Phys. Rev. D87 (2013) 016017.

Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt y A. V, Phys. Rev. D91 (2015) 114001.

## **♦ LFWF with Arbitrary Twist** 8

Recently we have suggested a LFWF at the initial scale  $\mu_0$  for hadrons with arbitrary number of constituents that looks like

$$\psi_{\tau}(x,\mathbf{k}_{\perp}) = N_{\tau} \frac{4\pi}{\kappa} \sqrt{\log(1/x)} (1-x)^{(\tau-4)/2} Exp \left[ -\frac{\mathbf{k}_{\perp}^{2}}{2\kappa^{2}} \frac{\log(1/x)}{(1-x)^{2}} \right]$$

The PDFs  $q_{\tau}(x)$  and GPDs  $H_{\tau}(x,Q^2)$  in terms of the LFWFs at the initial scale can be calculated.

We can extend our LFWF to an arbitrary scale.

Note: In this wave function we can add massive quarks (grouped in clusters).

<sup>&</sup>lt;sup>8</sup>Thomas Gutsche, Valery E. Lyubovitskij, Ivan Schmidt y A. V, Phys. Rev. D89 (2014) 054033.

## (s – s̄) Asymmetry with Holographic LFWFs 9

A. Vega, I. Schmidt, T. Gutsche and V. E. Lyubovitskij, arXiv:1511.06476 [hep-ph].

$$s(x) = \int_{x}^{1} \frac{dy}{y} f_{\Lambda/K\Lambda}(y) q_{s/\Lambda} \left(\frac{x}{y}\right) \quad and \quad \bar{s}(x) = \int_{x}^{1} \frac{dy}{y} f_{K/K\Lambda}(y) q_{\bar{s}/K} \left(\frac{x}{y}\right)$$

$$f_{B/BM}(y) = \int \frac{d^{2}k}{16\pi^{3}} |\psi_{BM}(y, k)|^{2}$$

$$q_{s/\Lambda}(x) = \int \frac{d^{2}k}{16\pi^{3}} |\psi_{\Lambda}(x, k)|^{2} \quad and \quad q_{\bar{s}/K}(x) = \int \frac{d^{2}k}{16\pi^{3}} |\psi_{K}(x, k)|^{2}$$

Figure:  $s(x) - \bar{s}(x)$  calculated with three different LFWFs (Gaussian, Holographic and Holographic with arbitrary twist).

### $(s - \bar{s})$ Asymmetry with a Holographic LFWF



Figure:  $x(s(x) - \overline{s}(x))$  calculated with three different LFWFs (Gaussian, Holographic and Holographic with arbitrary twist).



Figure:  $xS^- = x(s(x) - \bar{s}(x))$  with different parametrizations to nnlo.

20 of 23

- We present a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the  $s(x) \bar{s}(x)$  asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that  $s(x) < \bar{s}(x)$  for small values of x and  $s(x) > \bar{s}(x)$  in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is better.

- We present a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the  $s(x) \bar{s}(x)$  asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that  $s(x) < \bar{s}(x)$  for small values of x and  $s(x) > \bar{s}(x)$  in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is better.

- We present a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the  $s(x) \bar{s}(x)$  asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that  $s(x) < \overline{s}(x)$  for small values of x and  $s(x) > \overline{s}(x)$  in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is better.

- We present a hadronic wave function inspired by Light Front Holography, that consider arbitrary number of constituent in hadron.
- We calculated the  $s(x) \bar{s}(x)$  asymmetry in a light-front model considering three types of LFWFs that produce different results.
- In all of these cases we observe that  $s(x) < \bar{s}(x)$  for small values of x and  $s(x) > \bar{s}(x)$  in the region of large x.
- Among LFWFs considered, the holographic that consider arbitrary number of constituent is better.

