Cristóbal Corral cristobal.corral@usm.cl

Departamento de Física, Universidad Técnica Federico Santa María and Centro Científico Tecnológico de Valparaíso, Chile.

6th International Workshop on HEP in the LHC Era

Valparaíso, January 9, 2016.

O. Castillo-Felisola, C.C, V.E. Lyubovitskij, S. Kovalenko & I. Schmidt Phys. Rev. D91,085017 (2015)

Outline

1 Introduction

- 2 Einstein–Cartan theory coupled with fermions
- ⁽³⁾ Strong CP problem and the Peccei–Quinn axions
- **4** Axions in gravity with torsion

5 Conclusions

Introduction

Einstein (1915): General Relativity

- Torsion-free condition: $\mathcal{T}_{\mu}{}^{\lambda}{}_{\nu} = \Gamma_{\mu}{}^{\lambda}{}_{\nu} \Gamma_{\nu}{}^{\lambda}{}_{\mu} \equiv 2\Gamma_{[\mu}{}^{\lambda}{}_{\nu]} = 0.$
- Local Lorentz Symmetry and diffeomorphisms.
- One gravitational field: the metric.
- Second order equations.

Cartan (1922): First order formalism

- The torsion-free condition is relaxed: $\mathcal{T}_{\mu}^{\ \lambda}{}_{\nu} \neq 0.$
- Equivalent to GR when torsion vanishes.
- Two gravitational fields: the vielbein and the Lorentz connection.
- First order equations.

Cristóbal Corral (UTFSM)

Gravitational fields

- The vielbein $\mathbf{e}^a = e^a_\mu dx^\mu$, defined through $g_{\mu\nu} = \eta_{ab} e^a_\mu e^b_\nu$.
- The Lorentz connection $\boldsymbol{\omega}^{ab} = \omega_{\mu}{}^{ab} dx^{\mu}$, which defines the covariant derivative, \boldsymbol{D} , with respect to the local Lorentz group.
- Cartan's structure equations

$$\boldsymbol{D}\mathbf{e}^{a} = \mathbf{d}\mathbf{e}^{a} + \boldsymbol{\omega}^{a}{}_{c} \wedge \mathbf{e}^{c} = \boldsymbol{\mathcal{T}}^{a} = \frac{1}{2} \mathcal{T}_{\mu}{}^{a}{}_{\nu} dx^{\mu} \wedge dx^{\nu}, \qquad (1)$$

$$\mathbf{d}\boldsymbol{\omega}^{ab} + \boldsymbol{\omega}^{a}{}_{c} \wedge \boldsymbol{\omega}^{cb} = \boldsymbol{\mathcal{R}}^{ab} = \frac{1}{2} \, \mathcal{R}^{ab}{}_{\mu\nu} \, dx^{\mu} \wedge dx^{\nu}. \tag{2}$$

• Bianchi identities

$$D\mathcal{T}^{a} = \mathcal{R}^{a}{}_{b} \wedge \mathbf{e}^{b}$$
 and $D\mathcal{R}^{ab} = 0$ (3)

• Decomposition of the Lorentz connection $\boldsymbol{\omega}^{ab} = \overset{\circ}{\boldsymbol{\omega}}^{ab}(e) + \mathcal{K}^{ab}$, where

$$\mathbf{d}\mathbf{e}^{a} + \mathring{\boldsymbol{\omega}}^{a}{}_{b} \wedge \mathbf{e}^{b} \equiv \mathring{\boldsymbol{D}}\mathbf{e}^{a} = 0 \quad \text{and} \quad \boldsymbol{\mathcal{T}}^{a} = \boldsymbol{\mathcal{K}}^{a}{}_{b} \wedge \mathbf{e}^{b} \,. \tag{4}$$

Cristóbal Corral (UTFSM)

Einstein–Cartan theory coupled with fermions

• *D*-dimensional action¹

$$S = \frac{1}{2\kappa_*^2} \int \mathcal{R}_{ab} \wedge \star \left(\mathbf{e}^a \wedge \mathbf{e}^b \right) - \frac{1}{2} \int \left(\bar{\psi} \boldsymbol{\gamma} \wedge \star \boldsymbol{D} \psi - \boldsymbol{D} \bar{\psi} \wedge \star \boldsymbol{\gamma} \psi \right)$$
(5)

where $\kappa_*^2 \sim \frac{1}{M_*^{2+n}}$, $\gamma = \gamma_a \mathbf{e}^a$, $\bar{\psi} = -\imath \psi^{\dagger} \gamma^0$ and the covariant derivative²

$$\boldsymbol{D}\psi = \mathbf{d}\psi + \frac{1}{4}\boldsymbol{\omega}^{ab}\gamma_{ab}\psi.$$
 (6)

• Decomposing the Lorentz connection $\boldsymbol{\omega}^{ab} = \overset{\circ}{\boldsymbol{\omega}}^{ab}(e) + \mathcal{K}^{ab}$, we obtain an equivalent action (up-to-a boundary term)

$$S = \frac{1}{2\kappa_*^2} \int \mathring{\mathcal{R}}_{ab} \wedge \star \left(\mathbf{e}^a \wedge \mathbf{e}^b \right) - \frac{1}{2} \int \left(\bar{\psi} \boldsymbol{\gamma} \wedge \star \mathring{\boldsymbol{D}} \psi - \mathring{\boldsymbol{D}} \bar{\psi} \wedge \star \boldsymbol{\gamma} \psi \right) \\ + \frac{1}{2\kappa_*^2} \int \mathcal{K}_{am} \wedge \mathcal{K}^m{}_b \wedge \star \left(\mathbf{e}^a \wedge \mathbf{e}^b \right) - \frac{1}{8} \int \mathcal{K}^{ab} \wedge \star \bar{\psi} \left\{ \boldsymbol{\gamma}, \gamma_{ab} \right\} \psi \quad (7)$$

 ${1 \atop 2} D = 4 + n \text{ and the sum over the fermionic flavour is assumed.}$ ${2 \atop \gamma_{a_1...a_n} \equiv \gamma_{[a_1} \dots \gamma_{a_n]}.$

Cristóbal Corral (UTFSM)

Einstein–Cartan theory coupled with fermions

Equations of motion within the Cartan's formalism

$$\delta \mathbf{e}^{a} : \mathcal{R}_{ab} - \frac{1}{2} \eta_{ab} \mathcal{R} = \kappa_{*}^{2} \tau_{ab}$$
(8)

$$\delta \boldsymbol{\omega}^{ab} : \mathcal{T}_{a}{}^{b}{}_{c} - 2\mathcal{T}_{[a}\delta^{b}{}_{c]} = -\frac{\kappa_{*}^{2}}{2}\,\bar{\psi}\gamma_{a}{}^{b}{}_{c}\psi \tag{9}$$

$$\delta\bar{\psi} : \gamma^a \mathring{D}_a \psi + \frac{1}{4} \mathcal{K}_{abc} \gamma^{abc} \psi = 0$$
⁽¹⁰⁾

Solving the algebraic Eq. (9) we obtain

$$\mathcal{K}_{abc} = -\frac{\kappa_*^2}{4} \,\bar{\psi} \gamma_{abc} \psi, \tag{11}$$

for the contorsion tensor. Replacing it back into the initial action, leads to the D-dimensional effective theory

$$S_{\rm eff} = \mathring{S}_{\rm gr} + \mathring{S}_{\psi} + \frac{\kappa_*^2}{32} \int d^D x \, e \, \bar{\psi} \gamma_{abc} \psi \, \bar{\psi} \gamma^{abc} \psi.$$
(12)

Strong CP problem and the Peccei–Quinn axions

 $\bullet\,$ The CKM matrix and the $\theta\mbox{-vacuum of QCD}$ induce

$$\mathscr{L}_{\text{QCD}} \supset -\bar{\theta} \,\frac{\alpha_s}{2\pi} \,\operatorname{Tr}\left(\boldsymbol{G}\wedge\boldsymbol{G}\right)\,,\tag{13}$$

where $\bar{\theta} = \theta + \arg \det M$.

Strong CP problem

Limits on the neutron's electric dipole moment $\rightarrow \bar{\theta} \leq 10^{-10}$.

Peccei and Quinn solution (1977)

- Extra $U(1)_A$ symmetry, spontaneously broken at $\sim \Lambda_{EW}$.
- Axion coupled to Pontryagin density, i.e. $\sim \phi(x) \operatorname{Tr} [\mathbf{G} \wedge \mathbf{G}]$.
- Promote $\bar{\theta} \to \bar{\theta}(x) \sim \bar{\theta} + \phi(x)/f_{\phi}$ with $\langle \bar{\theta}(x) \rangle = 0 \to \langle \phi \rangle = -f_{\phi}\bar{\theta}$.
- Perturbations around $\langle \phi \rangle$ gives a CP-even $a(x) \operatorname{Tr} [\boldsymbol{G} \wedge \boldsymbol{G}]$.

- Motivation: QFT in background geometry
- $SU(N) \times U(1)$ gauge invariant action coupled with fermions

$$S = \frac{1}{2\kappa_*^2} \int \mathcal{R}_{ab} \wedge \star \left(\mathbf{e}^a \wedge \mathbf{e}^b \right) - \frac{1}{2} \int \left(\bar{\psi} \boldsymbol{\gamma} \wedge \star \mathcal{D} \psi - \mathcal{D} \bar{\psi} \wedge \star \boldsymbol{\gamma} \psi \right) - \frac{1}{2} \int \boldsymbol{F} \wedge \star \boldsymbol{F} - \int \operatorname{Tr} \left[\boldsymbol{G} \wedge \star \boldsymbol{G} \right] - \bar{\theta} \frac{\alpha_s}{2\pi} \int \operatorname{Tr} \left[\boldsymbol{G} \wedge \boldsymbol{G} \right]$$
(14)

• Duncan et.al: Nucl.Phys.B387,215 (1992)

• Impose the classical conservation $\mathbf{d} \star \boldsymbol{S} = 0$, where $\star \boldsymbol{S} = \mathbf{e}^a \wedge \boldsymbol{\mathcal{T}}_a$, at quantum level through

$$\mathcal{Z} = \int \prod_{\varphi} \mathcal{D}\varphi \, \mathcal{D}\boldsymbol{\mathcal{S}} \, e^{iS[\varphi, \boldsymbol{\mathcal{S}}]} \int \mathcal{D}\phi \, e^{i\int \phi \, \mathbf{d}\star\boldsymbol{\mathcal{S}}}.$$
 (15)

- Mielke and Sánchez Romero: Phys. Rev. D73,043521 (2006)
 - $\bullet\,$ Argue the appearance of $\mathbf{d}\boldsymbol{\mathcal{S}}\wedge\mathbf{d}\boldsymbol{\mathcal{S}}$ in the axial anomaly.
 - Modified axial-current by the addition of Chern-Simons-type terms

$$\star \hat{\boldsymbol{J}}_5 = \star \boldsymbol{J}_5 + \frac{\alpha_{\rm em} \bar{Q}^2}{\pi} \boldsymbol{C}_{FF} + \frac{\alpha_s N_q}{2\pi} \boldsymbol{C}_{GG} + \frac{N_f}{8\pi^2} \left(\boldsymbol{C}_{RR} + \boldsymbol{\mathcal{S}} \wedge \mathbf{d}\boldsymbol{\mathcal{S}} \right) \,.$$

- The conservation of the modified axial-current occurs when $\boldsymbol{S} \sim \mathbf{d}\phi$, where ϕ is a pseudoscalar potential.
- Mercuri: Phys.Rev.Lett.103,081302 (2009)
 - Divergent Nieh–Yan term in the $U(1)_A$ rotated fermionic measure.³
 - Add to the action (14) the topological Nieh–Yan density, i.e.

$$S \to S + \beta \int \left(\boldsymbol{\mathcal{T}}^{a} \wedge \boldsymbol{\mathcal{T}}_{a} - \boldsymbol{\mathcal{R}}_{ab} \wedge \mathbf{e}^{a} \wedge \mathbf{e}^{b} \right) = S + \beta \int \mathbf{d} \left(\mathbf{e}^{a} \wedge \boldsymbol{\mathcal{T}}_{a} \right).$$

• Promote the BI parameter to be a field, i.e. $\beta \to \beta(x)$ and absorb the divergence by means of renormalized $\beta(x)$.

Cristóbal Corral (UTFSM)

 $^{^3}$ Chandía & Zanelli Phys.Rev.D55,7580 (1997).

• Integrating out the torsion in either of these approaches leads to⁴

$$S_{ ext{eff}} = S_0 + S_ heta - rac{1}{2f_\Phi^2} \int oldsymbol{J}_5 \wedge \star oldsymbol{J}_5 - rac{1}{2} \int \mathbf{d} \Phi \wedge \star \mathbf{d} \Phi + rac{1}{f_\Phi} \int \Phi \, \mathbf{d} \star oldsymbol{J}_5 \,.$$

• Either approach gives a vanishing Nieh–Yan density.

• Replacing the axial anomaly

$$\mathbf{d} \star \boldsymbol{J}_{5} = -\frac{\alpha_{\rm em} \bar{Q}^{2}}{\pi} \boldsymbol{F} \wedge \boldsymbol{F} - \frac{\alpha_{s} N_{q}}{2\pi} \operatorname{Tr} \left[\boldsymbol{G} \wedge \boldsymbol{G} \right] - \frac{N_{f}}{8\pi^{2}} \mathring{\boldsymbol{\mathcal{R}}}^{ab} \wedge \mathring{\boldsymbol{\mathcal{R}}}_{ab} , \quad (16)$$

gives the explicit form of the effective theory⁵

$$\begin{split} S_{\text{eff}} &= S_0 - \frac{1}{2f_{\Phi}^2} \int \boldsymbol{J}_5 \wedge \star \boldsymbol{J}_5 - \frac{\alpha_{\text{em}} \bar{Q}^2}{\pi f_{\Phi}} \int \Phi \, \boldsymbol{F} \wedge \boldsymbol{F} - \frac{1}{2} \int \mathbf{d} \Phi \wedge \star \mathbf{d} \Phi \\ &- \frac{1}{8\pi^2} \int \left(\Theta + \frac{N_f}{f_{\Phi}} \, \Phi \right) \mathring{\boldsymbol{\mathcal{R}}}^{ab} \wedge \mathring{\boldsymbol{\mathcal{R}}}_{ab} - \frac{\alpha_s}{2\pi} \int \left(\bar{\theta} + \frac{N_q}{f_{\Phi}} \, \Phi \right) \text{Tr} \left[\boldsymbol{G} \wedge \boldsymbol{G} \right]. \end{split}$$

⁴We have defined $S_0 = \mathring{S}_{gr} + \mathring{S}_{\psi} + S_{gk}, f_{\Phi} = \kappa^{-1} \sqrt{8/3}$ and $\Phi = 4/3 f_{\Phi}^{-1} \vartheta$, where $\vartheta = \beta, \phi$. ⁵ N_f : number of fermionic flavors, N_q : number of quarks and $\bar{Q}^2 = \sum_f Q_f^2$. Cristóbal Corral (UTFSM) Axions in Gravity with Torsion January 9, 2016 10 / 13

Phenomenology			
	$M_{Pl} \sim 10^{18} [\text{GeV}]$	$M_* \sim 10^4 [\text{GeV}]$	$M_* \sim 10^2 [\text{GeV}]$
$f_{\Phi} [\text{GeV}]$	10^{18}	10^{4}	10^{2}
$m_a [\text{keV}]$	10^{-15}	10^{-1}	10
$\Gamma_{a \to \gamma \gamma} [\text{keV}]$	10^{-101}	10^{-32}	10^{-19}

• Torsion-descended axions as the dominant dark matter content⁶

$$r \le 1.6 \times 10^{-9}.\tag{17}$$

⁶M. Lattanzi & S. Mercuri *Phys.Rev.D81,125015*.

- Einstein-Cartan + fermions \rightarrow four-fermion interaction.
- Suitable modifications to such a theory solves the strong CP problem.
- Rather different motivations for the torsion-descended axions leads to the same effective theory.
- The axionic phenomenology is characterized only by the gravitational scale.
- Torsion-descended axions might be dark matter candidates.

Thank you!