First Results on Bilepton Production Based on LHC data and Predictions for Run II

Andre A. Nepomuceno¹, Bernhard Meirose²

¹Universidade Federal Fluminense ²University of Texas at Dallas

6th International Workshop on High Energy Physics in the LHC Era

Motivation

- The famous SM puzzles that have motivated the pre-LHC model building era are still unsolved.
- Recent ATLAS and CMS results may have seen hints of new bosons.
- New vector and scalar bosons are present in many models that embeds the SM in larger gauge groups. This talk: predictions of the 331 Models

Local significance: 3.6σ (ATLAS) and 2.6σ (CMS)

Motivation – Why 331 Model?

- > Based on the gauge symmetry $SU(3)_{C} \times SU(3)_{L} \times U(1)_{X}$.
- Provides an elegant solution for the family replication problem of the SM. Nontrivial anomaly cancellation takes place between families.
- Lepton family number is not required to be conserved.
- > It foresees a number of new gauge bosons (vectors and scalars).

Predictions: Vector Bileptons Y^{±±}
New neutral gauge boson Z'
Three new heavy Leptoquarks (Q₁,Q₂,Q₃)

Bileptons are bosons with two units of leptonic number

Decay Modes:
$$Y^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$$
 $Y^{\pm\pm} \rightarrow Qq$

Motivation – Why 331 Model?

- \triangleright Based on the gauge symmetry SU(3)_C X SU(3)_L X U(1)_X .
- Provides an elegant solution for the family replication problem of the SM. Nontrivial anomaly cancellation takes place between families.
- Lepton family number is not required to be conserved.
- > It foresees a number of new gauge bosons (vectors and scalars).

Predictions: Vector Bileptons Y^{±±}
New neutral gauge boson Z'
Three new heavy Leptoquarks (Q₁,Q₂,Q₃)

Bileptons are bosons with two units of leptonic number

$$Y^{\pm\pm} \rightarrow \ell^{\pm} \ell^{\pm}$$

$$Y^{\pm\pm} \rightarrow Qq$$

Bilepton Production at LHC

> Previous study of bilepton production at LHC 14 TeV through the process

$$pp \to Y^{++} Y^{--} \to e^{\mp} e^{\mp} \mu^{\pm} \mu^{\pm}$$
 (BM, AAN, **PRD 84, 2011**)

> Now we investigate the bilepton production at 7 TeV and 13 TeV in the channel

$$pp \rightarrow Y^{++} Y^{--} \rightarrow \mu^{+} \mu^{-} \mu^{-} \mu^{-}$$

For $M_{Y} > M_{O}$, decays like $Y^{\pm \pm} \rightarrow Qq$ become kinematically allowed.

Exclusion Limits at 7 TeV

ATLAS collaboration limits on cross-section for doubly-charged higgs production are used to set 95% CL limits on bilepton mass.

Bileptons with masses between 250 GeV and 550 GeV, depending on the exotic quark mass, are excluded.

Bileptons at LHC Run II – 13 TeV

Bileptons at LHC Run II – 13 TeV

Event Selection

- At least four muons
- The two pairs must have opposite signs
- $|\eta| < 2.5$ and $p_{_{\rm T}} > 20$ GeV
- Trigger Efficiency: 80%
- Signal overall efficiency: ~ 60%

Background

- Higgs production
- ZZ production

Higgs production only relevant for $M\mu\mu$ < 500 GeV.

Discovery Potential - Signal Region

- > The invariant mass of the same sign muons pair is used as the discriminant variable.
- > The signal region is defined as $[5\Gamma M_{_{Y}}, M_{_{Y}} + 5\Gamma]$, where Γ is the width obtained from a Gaussian fit to the signal reconstructed invariant mass distribution.

Discovery Potential – Test Statistic

An optimized χ^2 is used as test statistic (Almeida et.al., NIMA. **449**, 2000):

$$\chi^{2} = \sum_{i=i}^{N} \left[2(n-n_{b}) + (2n_{b}+1) \log \left(\frac{2n_{b}+1}{2n+1} \right) \right]$$

The χ^2 distribution for background only hypothesis (B) and for signal + background hypothesis (S+B) are determined by performing 5000 pesudo-experiments for each bilepton mass M_{γ} . The most probable value of the χ^2 for the S+B hypothesis is used to calculate the p-value.

P-value

$$P = \int_{\langle \chi^2 \rangle}^{\infty} f_b(z) dz$$

Discovery: $P < 2.3 \times 10^{-7}$

Discovery Potential

Minimal integrated luminosity needed to claim a discovery (13 TeV)

Bileptons masses up to 1 TeV can be probed with ~ 100 fb⁻¹.

Exclusion Limits at 13 TeV

A Bayesina approach is used to set expected limits on the bilepton production cross-section at 13 TeV (implemented in MCLimits)

Bileptons with masses between 550 GeV and 850 can be already excluded

Summary

- Lower limits on bilepton mass for different branching rations are derived from ATLAs results at 7 TeV.
- Bileptons with masses between 250 GeV and 550 GeV are excluded.
- > Signal of bileptons with 1 TeV mass could be observed in the second phase of LHC13 (~100 fb⁻¹).
- ▶ With ~ 4.0 fb⁻¹ of data, it is possible to extend the limits to 850 GeV.
- > To appear in arXiv soon.

Back-up Slides

Bileptons Production

Phys. Rev. **D87** (2013)

