Thursday, January 7, 2016

Searches for SUSY with photons in the final state in CMS Cristián Peña California Institute of Technology on behalf of the CMS collaboration

Motivation

SUSY with photons in the final state is well motivated:

- GMSB gluino / squark production predicts photons in the final state
- Higgs discovery \rightarrow exciting new direction in SUSY searches involving Higgs in the decay chain (SUSY-EW production)
- $h \rightarrow \chi \chi$ is a very clean and effective tagging signature for Higgs
- Will discuss both types of searches at CMS. Including new result on inclusive higgs-aware $(h \rightarrow \gamma \gamma)$ search using razor variables Thursday, January 7, 2016 2

Natural SUSY Spectrum

- Why do we expect to see SUSY at the LHC?
- Assume SUSY is a natural theory. Provides bound on the SUSY spectrum

Considering a "natural" (tuning < 1%) SUSY, new particles accessible at the LHC energies</th>Thursday, January 7, 201633Cristián Peña, Caltech

Gauge Mediated SUSY

- SUSY with gauge-mediated symmetry breaking
- Gravitino is the LSP. Stable if R-parity is conserved
- If NLSP is a neutralino (bino/wino), photons with large p_T may be produced

CMS-SUS-14-004, PRD 1507.02898

• Missing E_T

discriminating variable: E^{miss}_T

 Photon Final State

Thursday, January 7, 2016

4

- At least two photon (y)
- Jets
- Missing E_T

discriminating variable: Razor Cristián Peña, Caltech

CMS-SUS-14-004, PRD 1507.02898

• Selection:

- At least one photon (γ): $P^*_T > 110 \text{ GeV}$
- At least two jets: $P_T > 30 \text{ GeV}$
- $H_T^* > 500 \text{ GeV}$ (including γ)

SM backgrounds

- QCD multijet and **y**+jets events
- W+jets and tt + jets (EW): real E^{miss}_{T} , $e \rightarrow \gamma$
- **v**W+jets, **v**Z+jets, **v**tt + jets
- **Discriminating variable**
 - $E^{miss}T > 100$ GeV, 6 bin categories

CMS-SUS-14-004, PRD 1507.02898

Background Prediction

- Use a y^{loose} (relax isolation) control sample.
 Obtain correction factors for E^{miss}_T.
 Predict Multijet and y+jet
- Use a γ^{pixel} (pixel seed match) control sample. Predict EW scaling $E^{\text{miss}}_{\text{T}}$ distribution by $f_{e \rightarrow \gamma}$

Results

- Obtain Full background prediction
- Search $E^{miss}_T > 100$ GeV in 6 bins.
- Look for excesses in the tail of $E^{\rm miss}{}_{\rm T}$

No excess found in any E^{miss}_T bin

Thursday, January 7, 2016

CMS-SUS-14-004, PRD 1507.02898

- No observed excess
- Multi-channel counting exp.
- We set 95% CLs limits

- GGM-Wino
 - mgluino >~ 1 TeV, msquark ~ 0.8 TeV

• SMS T5wg

Thursday, January 7, 2016

CMS-SUS-14-004, PRD 1507.02898

• <u>Selection</u>:

- At least two photons (γ): $P^{\text{lead}}_T > 30$, $P^{\text{sublead}}_T > 22 \text{ GeV}$
- At least one jet: $P_T > 40$ GeV, $|\eta| < 2.5$, $\Delta R(\gamma_{(1,2)}, j_i) > 0.5$

Standard Model backgrounds

- QCD multijet, γ+jets events
- W+jets and tt + jets (EW): real $E^{miss}T$, e $\rightarrow \gamma$ (negligible)
- **Discriminating variables**
 - Razor variables: M_R (mass scale) and R² (energy imbalance)

• Search region: $M_R > 600 \text{ GeV } \&\& R^2 > 0.2$ (*high R*²)

CMS-SUS-14-004, PRD 1507.02898

Results

- Extrapolate fit shape to signal region
- Look for excess in $M_R > 600 \text{ GeV}$

No excess in any M_R bin.

CMS-SUS-14-004,

PRD 1507.02898

 $m_{gluino} > ~ 1.3 TeV$

SMS T5gg

- No observed excess
- multi-channel counting exp.
- We set 95% CLs limits

- GGM-Bino
 - mgluino >~ 1.5 TeV, msquark >~ 1.4 TeV

¹⁰ ^a ^b **S** Aware SUSY

Discovery of the higgs boson enhances the LHC SUSY program

- Search for electroweak SUSY production
 complements typical searches for strongly
 produced SUSY
- Characterized by: fewer jets & more W, Z, Higgs in decay chain
- h →yy is particularly interesting : a narrow resonance
- Final state: photons, jets and/or leptons

eak SUSY Searches (h $\rightarrow \gamma \gamma$)

CMS-SUS-14-002, PRD 90, 092007 (2014)

<u>Selection</u>:

- At least two photons (γ): $P^{\text{lead}}_T > 40$, $P^{\text{sublead}}_T > 25 \text{ GeV}$
- Both photons in ECAL barrel, i.e $|\eta| < 1.44$
- Two highest P_T photons form higgs candidate

SM backgrounds

- QCD multijet events: mismeasured E^{miss}_T + fakes
- QCD multijet + $\gamma/\gamma\gamma$: mismeasured $E^{miss}T$ (dominant)
- SM-higgs: real E^{miss}T, (sub-leading)

Discriminating variables

- Depends on the final state:
 - hh $\rightarrow \gamma\gamma$ bb, S^h_T: scalar sum of higgs cand. P_T
 - hZ, hW $\rightarrow \gamma \gamma + 2jets: E^{miss}T$
 - hZ, hW \rightarrow yy + leptons: missing transverse mass M_T

Electroweak SUSY Searches (h $\rightarrow \gamma \gamma$)

CMS Unpublished $L = 19.5 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}$ ∧ 9 57000 sideband **Jpper sideband** Higgs tag Events 5000 4000 **3000** 2000 1000 0 60 160 80 100 120 140 180 m_{vv} [GeV] CMS Unpublished $L = 19.5 \text{ fb}^{-1}$ √s = 8 TeV Events / GeV 10³ Inclusive $\gamma\gamma$ 10 10⁻¹ 10^{-2} 10^{-3} 10-4 Data Prediction 1.8 1.6 100 50 150 E^{miss}_T [GeV]

Background Prediction

CMS-SUS-14-002, PRD 90, 092007 (2014)

- Define sideband region:
 m_{γγ} ∋ [{103-118}, {133-163}] GeV
- Fit sidebands with a power law function
- Use fit to extrapolate from the sidebands to the signal region
- Extrapolate chosen search variable distribution in sidebands to signal region
- Estimate SM-Higgs using Monte Carlo

Electroweak SUSY Searches (hh $\rightarrow \gamma\gamma bb$)

CMS-SUS-14-002, PRD 90, 092007 (2014)

Search for double higgs production

- Reconstruct one higgs candidates through:
 - $h \rightarrow \gamma \gamma$ decay, $m_{\gamma \gamma} \ni [103-163]$ GeV
 - $h \rightarrow bb \ decay, \ m_{bb} \ni [95-155] \ GeV_{LPCC \ SUSY \sigma WG}$
- Construct Sh, scalar sum PT of the two
- Background prediction by extrapol 10^{-10}_{-100} 200 300 400 500 600 from m_{XX} sidebands. SUSY sparticle mass [GeV]

No significant excess observed

SM-Higgs background from MC: negligible

700 800

Electroweak SUSY Searches (hZ/W $\rightarrow \gamma\gamma 2j$

CMS-SUS-14-002, PRD 90, 092007 (2014)

Search for higgs + V(Z,W) production

- Reconstruct higgs through: $h \rightarrow \frac{5}{3}$
- Reconstruct V through hadronic decay: $m_{jj} \ni [70-110] \text{ GeV}$
- Discriminating variable E^{miss}T

No significant excess observed

SM-Higgs background from MC: 30% uncertainty

Thursday, January 7, 2016

Cristián Peña, Caltech

decay

 $\widetilde{\chi}^{\dagger}\widetilde{\chi}$

500 600

700 800 900 100

SUSY sparticle mass [GeV]

Electroweak SUSY Searches (h (h,V) $\rightarrow \gamma\gamma$ leptons)

CMS-SUS-14-002, PRD 90, 092007 (2014)

Search for higgs + (h,V) production

- Reconstruct higgs through: h → yy decay
- Tag second boson by requiring at least one (e/ μ)
- At least one electron, at least one muon
- Discriminating variable: transverse mass (M_T)
 - Background prediction by extrapolating from $m_{\chi\chi}$ sidebands.

Largest excess observed is 2.1σ in electron sample

SM-Higgs background from MC: 30% uncertainty

Thursday, January 7, 2016

roweak SUSY Searches

 $\tilde{\chi}_2^0$

 $\tilde{\chi}_1^{\pm}$

Set limits for electroweak GMSB hh production

- hh →**y y**bb
- hh →y y + lepton
- Expected sensitivity could rule out neutralino at 150 GeV, but observation does not.

CMS-SUS-14-002, PRD 90, 092007 (2014)

 $\tilde{\chi}_1^0$

 W^{\pm}

Thursday, January 7, 2016

roweak SUSY Searches

CMS-SUS-14-002, PRD 90, 092007 (2014)

- Set limits for electroweak hW production
 - hh →y y + 2jets
 - hh $\rightarrow \gamma \gamma$ + leptons
- Current sensitivity from combination of channels is close to theoretical cross section at 130 GeV

Inclusive Higgs-aware Search

CMS-SUS-14-017: New Result

Inclusive Search for SUSY with Higgs

- <u>Selection</u>:
 - Tag higgs using: $h \rightarrow \gamma \gamma$
 - Categorize using higgs P_T and photon resolution
- Discriminating variables: M_R and R^2

• Background prediction by extrapolating from $m_{\gamma\gamma}$ sidebands.

m_{YY} ∋ [{103-118}, {133-163}] GeV Thursday, January 7, 2016

Inclusive Higgs-aware Search

HighRes Event Category Results

M_R region	R^2 region	observed events	expected background	p-value	significance (σ)	
150 - 250	0.00 - 0.05	363	$357.6^{+9.6}_{-9.4}$ (syst.)	0.40	0.3	CMS-SUS-14-017:
150 - 250	0.05 - 0.10	149	$139.4^{+5.6}_{-5.4}(\text{syst.})$	0.23	0.7	New Result
150 - 250	0.10 - 0.15	35	$32.5^{+3.4}_{-3.1}(\text{syst.})$	0.34	0.4	
150 - 250	0.15 - 1.00	7	$8.0^{+1.7}_{-1.4}$ (syst.)	0.40	-0.3	
250 - 400	0.00 - 0.05	218	$207.9^{+7.0}_{-6.8}$ (syst.)	0.27	0.6	excess is 16 a
250 - 400	0.05 - 0.10	20	$14.7^{+2.5}_{-2.1}$ (syst.)	0.13	1.1	
250 - 400	0.10 - 1.00	3	$2.7^{+0.8}_{-0.6}$ (syst.)	0.43	0.2	after look
400 - 1400	0.00 - 0.05	109	$101.6^{+5.0}_{-4.8}$ (syst.)	0.26	0.7	al a sul aux affa at
400 - 1400	0.05 - 1.00	5	$0.5^{+0.4}_{-0.2}(\text{syst.})$	0.002	2.9	elsewhere effect
1400 - 3000	0.00 - 1.00	0	$0.9^{+0.5}_{-0.3}(m syst.)$	0.44	-0.1	

Inclusive Higgs-aware Search

HighRes Event Category Results

M_R region	R^2 region	observed events	expected background	p-value	significance (σ)	
150 - 250	0.00 - 0.05	363	$357.6^{+9.6}_{-9.4}$ (syst.)	0.40	0.3	<i>CMS-SUS-14-017</i> :
150 - 250	0.05 - 0.10	149	$139.4^{+5.6}_{-5.4}(\text{syst.})$	0.23	0.7	New Result
150 - 250	0.10 - 0.15	35	$32.5^{+3.4}_{-3.1}(\text{syst.})$	0.34	0.4	
150 - 250	0.15 - 1.00	7	$8.0^{+1.7}_{-1.4}$ (syst.)	0.40	-0.3	
250 - 400	0.00 - 0.05	218	$207.9^{+7.0}_{-6.8}(syst.)$	0.27	0.6	excess is 16 a
250 - 400	0.05 - 0.10	20	$14.7^{+2.5}_{-2.1}$ (syst.)	0.13	1.1	
250 - 400	0.10 - 1.00	3	$2.7^{+0.8}_{-0.6}$ (syst.)	0.43	0.2	after look
400 - 1400	0.00 - 0.05	109	$101.6^{+5.0}_{-4.8}$ (syst.)	0.26	0.7	alagulagua effect
400 - 1400	0.05 - 1.00	5	$0.5^{+0.4}_{-0.2}(syst.)$	0.002	2.9	elsewhere ejject
1400 - 3000	0.00 - 1.00	0	$0.9^{+0.5}_{-0.3}(syst.)$	0.44	-0.1	

- hW electroweak production
- Exclude a 130-150 GeV neutralino/ chargino

- hh electroweak production
- Sensitivity close to exclude-a-130 GeV neutralino

Thursday, January 7, 2016

Cristián Peña, Caltech

 10^{4}

- CMS searches for GMSB SUSY gluino/squark production
 - single and diphoton final state, no excesses found
 - Exclude gluino at 1.0 TeV and squark at 0.8 TeV (wino case)
 - Exclude gluino at 1.5 TeV and squark at 1.4 TeV (bino case)
- CMS searches for GMSB SUSY EW production
 - Use SM h ($h \rightarrow \gamma \gamma$) as a tool to look for SUSY
 - New analyses improve sensitivity to hh, hW electroweak production. hW, chargino/neutralino excluded at 150 GeV
- New higgs-aware search: does not depend on a particular SUSY model. Enhances possible discovery.
- Interesting results. Stay tuned for 13 TeV photon updates

Backups

CONSTITUENT

CMS-SUS-14-002, PRD 90, 092007 (2014)

Search for higgs + (h,V) production

- Apply standard photon selection
- Reconstruct one higgs candidate by its yy decay
 - m_{yy} ∋ [103-163] GeV
- Tag second boson by requiring at least one (e/ μ)
 - Isolated Leptons, $P_T > 15$ GeV, $|\eta| < 2.4$
 - $\Delta R(y_{(1,2)}, lepton) > 0.3$
 - m_{ey} ∌ [86-96] GeV
- Two search samples:
 - At least one electron, at least one muon
- Look for excess in the transverse mass M_T distribution
- Fit m_{¥¥} in sidebands. Use fit result to scale the M_T sideband distribution to the expected signal region.
 2.1 standard deviations excess in electron sample. cross checks suggest consistent with background fluctuation

SM-Higgs background from MC: 30% uncertainty

Thursday, January 7, 2016

CMS-SUS-14-004, PRD 1507.02898

• Selection:

- At least one photon (γ): P*_T > 110 GeV
- At least two jets: $P_T > 30$ GeV, $|\eta| < 2.5$, $\Delta R(\gamma, j_i) > 0.3$
- $H_T^* > 500 \text{ GeV}$ (including γ)
- SM backgrounds
 - QCD multijet events: mismeasured E^{miss}_T + fakes
 - QCD multijet + γ : mismeasured E^{miss}_T
 - W+jets and tt + jets (EW): real $E^{miss}T$, $e \rightarrow \gamma$
 - yW+jets, yZ+jets, ytt + jets
- Discriminating variable
 - E^{miss}_T > 100 GeV, 6 bin categories
- Background estimation
 - Use a γ^{loose} (relax isolation) control sample. Obtain correction factors for E^{miss}_T. Predict Multijet and γ+jet
 - Use a γ^{pixel} (pixel seed match) control sample. Predict EW scaling $E^{miss}T$ distribution by $f_{e \rightarrow \gamma}$

CMS-SUS-14-004, PRD 1507.02898

Selection:

- At least two photons (γ): $P^{\text{lead}}_T > 30$, $P^{\text{sublead}}_T > 22 \text{ GeV}$
- At least one jet: $P_T > 40$ GeV, $|\eta| < 2.5$, $\Delta R(\gamma_{(1,2)}, j_i) > 0.5$
- SM backgrounds
 - QCD multijet events: mismeasured E^{miss}T + fakes
 - QCD multijet + γ: mismeasured E^{miss}_T (dominant)
 - W+jets and tt + jets (EW): real $E^{miss}T$, $e \rightarrow \gamma$ (negligible)
- **Discriminating variable**
 - Razor variables: M_R (mass scale) and R^2 (energy imbalance)
- Background estimation
 - Define control region $M_R > 600 \text{ GeV } \&\& 0.01 < R^2 < 0.02$. *Fit* M_R with $P(M_R) \propto e^{-k (M_R - M_R^0)^{\frac{1}{n}}}$
 - Use fit shape normalize to the total number of events as background prediction in signal region

Fit to control sample:

 $\frac{4}{M_{R}(TeV)}$ bottom panel z-score (number of Normal standard deviation)

Thursday, January 7, 2016

Thursday, January 7, 2016

Background Prediction

- Define control region $M_R > 600 \text{ GeV } \&\& 0.01 < R^2 < 0.02$. *Fit* M_R with $P(M_R) \propto e^{-k(M_R - M_R^0)^{\frac{1}{n}}}$ (low R²)
- Normalize to the total yield as background prediction in signal region

CMS-SUS-14-004, PRD 1507.02898

Background Prediction Validation

- Search region: $M_R > 600 \text{ GeV \&\& } R^2 > 0.2 \text{ (high } R^2\text{)}$
- Control sample in high R² kinematic region with photons failing isolation/cluster shape
- No observed systematic deviation. within one standard deviation

Signal Injection Test CMS-

- CMS-SUS-14-004, PRD 1507.02898
- Inject signal events to the control sample
 - $m_{gluino} = 1820 \text{ GeV}, m_{squark} = 1400 \text{ GeV} (GGMbino)$
- Clear excess at M_R ~ 2 TeV. This is how an signal would show up. Analysis works as designed

Results

- Extrapolate fit shape to signal region
- Look for excess in M_R > 600 GeV

No excess in any M_R bin.

 M_{R} (TeV)

CMS-SUS-14-004, PRD 1507.02898

$$\begin{split} M_{\rm R} &\equiv \sqrt{(|\vec{p}^{j_1}| + |\vec{p}^{j_2}|)^2 - (p_z^{j_1} + p_z^{j_2})^2}, \\ {\rm R}^2 &\equiv \left(\frac{M_{\rm T}^{\rm R}}{M_{\rm R}}\right)^2, \end{split}$$

$$M_{\rm T}^{\rm R} \equiv \sqrt{\frac{E_{\rm T}^{\rm miss}(p_{\rm T}^{j_1} + p_{\rm T}^{j_2}) - \vec{p}_{\rm T}^{\rm miss} \cdot (\vec{p}_{\rm T}^{j_1} + \vec{p}_{\rm T}^{j_2})}{2}}.$$

Thursday, January 7, 2016

- Search region: $M_R > 600 \text{ GeV } \&\& R^2 > 0.2$ (*high R*²)
- Define a control sample in the high R² kinematic region with photons failing isolation/cluster shape

Background Prediction Validation

- Test background prediction technique in this control sample
- Normalize obtained fit shape *P*(M_R) ∝ *e*<sup>-k(M_R-M⁰_R)^{1/n} to observed yield in control sample (high R²)
 </sup>
 - No observed systematic deviation. Most deviations are within one standard deviation

Signal Injection Test

CMS-SUS-14-004, PRD 1507.02898

- Test analysis sensitivity/behavior
- Inject signal events to the control sample data
 - $m_{gluino} = 1820 \text{ GeV}, m_{squark} = 1400 \text{ GeV} (GGMbino)$
- Use same prediction as in the background prediction validation
- Clear excess at M_R ~ 2 TeV. This is how an signal would show up. *Analysis works as designed*

Electroweak SUSY Searches (h (h,V) $\rightarrow \gamma\gamma$ leptons)

CMS-SUS-14-002, PRD 90, 092007 (2014)

Search for higgs + (h,V) production

- Apply standard photon selection
- Reconstruct higgs through: h → yy decay
- Tag second boson by requiring at least one (e/ μ)
 - Isolated Leptons, $P_T > 15$ GeV, $|\eta| < 2.4$
 - $\Delta R(\gamma_{(1,2)}, \text{lepton}) > 0.3$
 - m_{eγ} ∌ [86-96] GeV
- Two search samples:
 - At least one electron, at least one muon
- Look for excess in the transverse mass M_T distribution
- Fit m_{¥¥} in sidebands. Use fit result to scale the M_T sideband distribution to the expected signal region.
 2.1 standard deviations excess in electron sample.
 cross checks suggest consistent with background fluctuation

SM-Higgs background from MC: 30% uncertainty

Thursday, January 7, 2016

Electroweak SUSY Searches

CMS-SUS-14-002, PRD 90, 092007 (2014)

- Set limits for electroweak GMSB hh production
- hh production In this talk
 - hh →y ybb
 - $hh \rightarrow \gamma \gamma + lepton$
- Not enough sensitivity to exclude any neutralino mass yet
- Expected sensitivity could rule out a 150 GeV neutralino

- 50% BR to $\chi^1 \rightarrow ZG$
- hh production In this talk
 - $hh \rightarrow \chi \chi bb$
 - $hh \rightarrow \gamma \gamma + lepton$
- **Combination excludes neutralinos at ~ 290 GeV**

 $\widetilde{\chi}^{\dagger}\widetilde{\chi}$

production

700 800 900 1000

SUSY sparticle mass [GeV]

 10^{-1}

 10^{-2}

ÖTZ 10⁻⁴

o(pp

Razor $h \rightarrow \gamma \gamma$

Event Category	Background Prediction Transfer Factor
HighPt	0.162 ± 0.004
Hbb	0.212 ± 0.049
Zbb	0.204 ± 0.032
HighRes	0.162 ± 0.002
LowRes	0.259 ± 0.002

MC normalization systematic uncertainties					
Source	value	target			
luminosity	2.5%	Signal Models, SM Higgs boson MC			
trigger efficiency	5%	Signal Models, SM Higgs boson MC			
Higgs boson theory	2% - 8%	SM Higgs boson MC			
signal theory x-sec uncertainty	$\approx 13\%$				
Object-level systematic uncertainties					
jet energy scale	shape (3%)	Signal Models, SM Higgs boson MC			
photon energy and resolution	shape (1%)	Signal Models, SM Higgs boson MC			
b-tagging ID	shape $(0 - 4\%)$	Signal Models, SM Higgs boson MC			
σ_E/E uncertainty	shape	Signal Models, SM Higgs boson MC			
Normalization & shape systematic uncertainties					
background prediction uncertainty	1% - 50%	background shape			
sideband yields	1 - 100%	low event yields in the data sidebands			
fit choice	$\approx 1\%$	background normalization			
MC statistics	varies	statistics in SM Higgs boson and SMS MC			

Razor $h \rightarrow \chi \chi$

