Diffraction at HERA

Alice Valkárová Charles University, Prague

HERA collider experiments

- 27.5 GeV electrons/positrons on 920 GeV protons $\rightarrow \sqrt{s}$ =318 GeV
- data taken in 1992-2007
- HERA I,II: ~ 500 pb⁻¹ per experiment
- H 1 & ZEUS 4π detectors

Diffraction

New era started with HERA:

H1: 31 publications about diffraction

ZEUS: 31 publications about diffraction

+ one common H1/ZEUS publication

At HERA 10% of events are diffractive

Diffractive kinematics

Deep inelastic scattering - DIS

- Q²- virtuality of the photon
- $Q^2\sim 0$ GeV² \rightarrow photoproduction
- $Q^2 >> 0 \text{ GeV}^2 \rightarrow DIS$
- W total hadronic energy

Diffractive scattering

• momentum fraction of color singlet exchange

$$x_{I\!\!P} = \xi = rac{Q^2 + M_X^2}{Q^2 + W^2}$$

fraction of exchange momentum, coupling to y

$$eta = rac{Q^2}{Q^2 + M_X^2} = x_{q/I\!\!P} = rac{x}{x_{I\!\!P}}$$

• 4-momentum transfer squared (if proton is measured)

$$t = (p - p')^2$$

 $M_y = m_p$ proton stays intact

 $M_y > m_p$ proton dissociates, contribution should be understood

Methods of diffraction selection

Proton spectrometers

H1: VFPS (2005-2007) FPS (1997-2007)

ZEUS: LPS (1997-2000)

- © free of p-dissociation background
- © X_{TP} and † measurements
- \odot access to high \times_{IP} range (IP and IR)
- 😊 small acceptance, small statistics

Large Rapidity Gap (LRG)

require no activity beyond η_{max}

- ★ not measured,integrated over | † | <1GeV²</p>
- © very good acceptance at low XIP
- 😕 p-diss background about 20% 😹

Different phase space and systematics - non-trivial to compare!

Modelling of diffraction

QCD collinear factorisation theorem

Breit frame- proton very fast

$$\sigma^{D}(\gamma^* p \to Xp) = \sum_{parton_i} f_i^{D}(x, Q^2, x_{IP}, t) \cdot \sigma^{\gamma^* i}(x, Q^2)$$

DPDFs - obey DGLAP universal for diff. ep DIS

hard scattering cross section

Proton vertex factorisation (conjecture, e.g. Resolved Pomeron Model by Ingelman&Schlein)

$$f_{i}^{D}(x,Q^{2},x_{IP},t) = f_{IP/p}(x_{IP},t) \cdot f_{i}^{IP}(\beta = x/x_{IP},Q^{2})$$

$$f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$
diffractive DPDF

Pomeron flux factor

Then DPDFs extracted from DIS data

Dipole models

Proton rest frame - dipoles

[C. Marguet PRD76 (2007) 094017]

$$d\sigma_{diff}^{\gamma^*p}/dt \propto \int dz dr^2 \Psi^* \sigma_{qq}^2(x,r^2,t) \Psi$$

y* fluctuates into $q\bar{q}, q\bar{q}g$ states (color dipoles) of transverse size proportional to $1/J(Q^2+M_{qq}^2)$

No extra parameters needed for DDIS

DPDFs in DIS- H1 and ZEUS

- DPDFs extracted from NLO DGLAP fit, using Regge factorisation
- DPDFs: H1 fit B, H1 fit Jets, ZEUS fit SJ
- Gluon exchange dominates (~ 70-75% of the Pomeron momentum), main differencies in fits
- DPDFs used in NLO calculations to predict diffractive production of charm and dijets

$$Z_{IP} = \frac{\sum (E + p_z)_{jets}}{(E + p_z)_{hadrons}}$$

Combined measurements

H1 - LRG and FPS

H1 and ZEUS forward spectrometers

EPJC 72, (2012) 2175

HEP in the LHC Era, Valparaiso

Are "rapidity gap"and "forward proton" methods compatible

Cross section measured using LRG method should be scaled by factor $1./1.2 \sim 0.83$ as compared with FP method (in H1).

Precise knowledge and corrections for proton dissociation background-key point in H1- ZEUS data comparison

no Q^2 , β or x_{IP} dependent differencies observed!

H1 & ZEUS-LRG, comparison with models

Normalization difference of ~ 10% between H1 nad ZEUS is within normalization uncertainties of each experiment

- low Q² better description by dipole model, higher twist contributions?
- high Q^2 better description by H1 fit B DPDF
- no unique tool to describe all data

Data available for comparison with models

HERA LRG data combination.....

Factorisation tests in diffractive production

Motivation:

Factorisation was found to be broken in hadron-hadron collisions at Tevatron (DO) and LHC (CMS and ATLAS).

Measurements using HERA DPDFs compared to NLO QCD predictions.

suppression factor

$$S^{2} = \frac{\sigma (data)}{\sigma (theory(NLO QCD))}$$

Suppression factors $S^2 \sim 0.1$ at Tevatron and LHC.

Several theories expect factorisation breaking in diffractive ep photoproduction, due to multiple scattering, or 'absorptive' effects, which occur in the presence of beam remnants.

Diffractive dijet production in DIS

	method	Q ² [GeV ²] E _{T jet1(2)} [GeV] NLO			published	suppression factor S ²
	LRG	<4,80>	5,(4)	DISENT	JHEP 0710:042, (2007)	~ 1
	LRG	<4,80>	5.5,(4)	NLOJET++	EPJ <i>C</i> 51 (2007) 507	~ 1
ZEUS	LRG	<5,100>	5,(4)	NLOJET++ DISENT	EPJC 52 (2007),813 Nucl.Phys B831 (2010) 1	~ 1
	Proton detected, FPS	<4,110>	5,(4)	NLOJET++	EPJ <i>C</i> 72, (2012),1970	~ 1
>new <	LRG	<4,100>	5.5,(4)	NLOJET++	JHEP 1503 (2015) 092	0.95 ±0.09(exp) ±0.3(th)
inew Z	Proton detected, VFPS	<4,80>	5.5,(4)	NLOJET++	JHEP 1505 (2015) 056	1.08 ±0.11(exp) ±0.4(th)

All measurements in agreement with NLO QCD calculations within uncertainties, factorisation confirmed.

Recent -diffractive dijet production in DIS

Measurements in agreement with NLO QCD calculations, factorisation confirmed.

HEP in the LHC Era, Valparaiso 11.1.2016

Recent -diffractive dijet production in DIS

$$a_s(M_Z) = 0.119 \pm 0.004 \text{ (exp)} \pm 0.012 \text{ (DPDF, theo)}$$

Result is consistent within uncertanties with the world average

Factorisation tests in diffractive dijet photoproduction

direct photoproduction:

photon directly involved in hard scattering $\rightarrow X_v=1$

no suppression expected

resolved photoproduction:

photon fluctuates into hadronic system, which takes part in hadronic scattering, dominant at $\mathbb{Q}^2 \simeq 0 \rightarrow \mathbb{X}_{\gamma} < 1$

Theor.prediction of Kaidalov, Khoze, Martin, Ryskin (European Journal of Physics 66,373 (2010))

suppression: quarks 0.71(0.75) $E_T^{jet1} > 5 (7.5)$ GeV gluons 0.53(0.58) $E_T^{jet1} > 5 (7.5)$ GeV

Diffractive dijet production in photoproduction

In NLO calculations used mostly H1 2006 fit B, y-PDF GRV and tested by y-PDF AFG

	method	Q²[GeV²]	E _{T jet1(2)} [GeV] NLO	published	suppression factor
	LRG	tagged	5,(4)	Frixione	JHEP 0710:042, (2007)	0.5 ± 0.1
ZEUS	LRG	untagged	7.5,(6.5)	Klasen,Kramer Frixione	EPJC 55 (2008) 177 Nucl.Phys B831 (2010) 1	~ 0.9-1
	LRG	tagged	5,(4)	Frixione Klasen,Kramer	EPJC 52 (2010),15	0.58 ±0.01±0.12(exp) ±0.14±0.09(th)
Inew Z	Proton detected, VFPS	untagged	5.5,(4)	Frixione	JHEP 1505 (2015) 056	0.511 ±0.085(exp) ±0.02(th)

- * H1 observed factorisation breaking by a factor 0.5
- * ZEUS results compatible with no suppression (with large uncertainites)
- * Note however that $E_{T \text{ jet1(2)}}$ range is different in H1 and ZEUS

Diffractive dijet photoproduction & DIS- measurement in Very Forward Proton Spectrometer

DIS & photoproduction

other cuts identical: $0.01 < x_{TP} < 0.024$

|t| < 0.6 GeV2

 $z_{TP} < 0.8$

 $E_{T}^{*}_{jet1(2)} > 5.5(4) \ GeV$ -1 < $\eta_{jet1(2)} < 2.5$

Independent cross-check of LRG measurements - without proton dissociation!

Diffractive dijet photoproduction & DIS

Data in agreement with NLO in DIS, within uncertainites

Data suppressed in comparison with NLO in photoproduction

Diffractive dijet photoproduction

$$x_{\gamma} = x_{\gamma}^{OBS} = \frac{\sum (E - p_z)_{jets}}{(E - p_z)_{hadrons}}$$

The suppression seems to be not dependent on \mathbf{x}_{γ} . It is in agreement with previous H1 and ZEUS observations!

Diffractive dijet photoproduction & DIS

Previous H1 measurements confirmed, factorisation breaking in diffractive dijet photoproduction by factor ~ 0.5 observed

HEP in the LHC Era, Valparaiso 19.1.1.2016

Diffractive dijet photoproduction & DIS

Dependence of the suppression on E_T^* of the leading jet and z_{IP} not observed!

The reason of the difference of suppression for H1 and ZEUS is not connected with different phase space in E_{T} of jets

Diffractive D* production in DIS & photoproduction

- hard scale -> mass of D*
- sensitive to gluon content
- direct production dominates -> not so sensitive test of possible factorisation breaking

Good agreement with NLO QCD calculations

Charm contribution to $F_2^D \sim 20\%$ - similar as for inclusive DIS

	method	Q²[GeV²]	fragmentation	NLO	published:	factorisation
ZEUS	LRG	DIS <1.5,200>	Peterson	HVQDIS	NuclPhys B672 (2003) 3	OK
	LRG	DIS <2,100> <15,100>	Peterson	HVQDIS	EPJ <i>C</i> 50 (2007) 1	OK \
ZEUS	LRG	photoproduction untagged	n Peterson	FMNR	EPJC 51 (2010),15	ОК
	LRG	photoproduction tagged	n Peterson	FMNR	EPJC 50 (2007) 1	1.15 ±0.50(exp) ±0.08(th)

Consistent with factorisation within large uncertainies

H1 measured double ratio

$$R_{\rm DIS}^{\gamma p} = \frac{\left(\sigma^{\rm meas}/\sigma^{\rm theo}\right)_{\gamma p}}{\left(\sigma^{\rm meas}/\sigma^{\rm theo}\right)_{\rm DIS}}$$

- H1 and ZEUS measured inclusive diffractive cross sections using different methods of diffraction selection and determined Diffractive Parton Density Functions (DPDFs).
- Measured DPDFs were applied in NLO calculations to wide variety of observables for DIS and photoproduction
 - tests of QCD collinear factorisation.
 - In diffractive DIS QCD factorisation confirmed
 - In dijet photoproduction ZEUS results consistent with factorisation,
 H1 measured suppression factor S²~0.5 using both LRG and proton detection selection
 - In diffractive D* production within large uncertainties QCD factorisation confirmed for both DIS and photoproduction