SUMMARY

ON THE DETECTION OF THE HIGHEST ENERGY PARTICLES IN THE UNIVERSE WITH THE PIERRE AUGER OBSERVATORY

Miguel A. Mostafá

6th International Workshop on High Energy Physics in the LHC Era Valparaiso, Chile — January 6 – 12, 2016

THE COSMIC RAY ENERGY SPECTRUM

- 10⁹ eV: galactic, strong solar modulation
- ► 10⁹ eV to 10¹⁵ eV: galactic, probably from SNR
- ► 10¹⁵ eV to 10¹⁹ eV some hints of:
 - galactic anisotropy at 10¹⁸ eV
 - composition from heavy to light
- Above 10¹⁹ eV: UHECR *terra incognita!*

Particle Accelerators Full of Spin and Fury, Signifying Something

Elwood H. Smith

Published in the NYT on August 1, 2011

Black Holes Belch Universe's Most Energetic Particles

Image courtesy NASA E/PO, Sonoma State University, Aurore Simonnet

Published in National Geographic News on November 8, 2007

Black Holes Belch Universe's Most Energetic Particles

Image courtesy NASA E/PO, Sonoma State University, Aurore Simonnet

Published in National Geographic News on November 8, 2007 "We discovered the sources of the highest-energy particles in the universe," said team member Miguel Mostafa...

BLACK HOLE OUTFLOWS FROM CENTAURUS A

Credit: X-ray: NASA/CXC/CfA/R.Kraft et al.; Sub-mm: MPIfR/ESO/APEX/A.Weiss et al.; Optical: ESO/WFI

RESULTS

MOTIVATION

SOURCES OF UHECRS

- Determine acceleration or other production mechanism
- Find maximum energy of sources
- Discover sources or source regions

MOTIVATION

PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS

- Identify energy loss processes
- Determine strength of galactic and extra-galactic magnetic fields

MOTIVATION

PARTICLE PHYSICS BEYOND LHC ENERGIES

- Determine characteristics of particle production
- Search for new phenomena, probe fundamental principles

EXTENSIVE AIR SHOWERS

THE PIERRE AUGER OBSERVATORY

THE AUGER SURFACE DETECTOR

12

THE AUGER SURFACE DETECTOR

RESULTS

SUMMARY

THE AUGER FLUORESCENCE DETECTOR

THE AUGER FLUORESCENCE DETECTOR

THE AUGER FLUORESCENCE DETECTOR

I HAD A <u>Hybrid Dream</u>...

I H<u>AD A HYBRID DREAM...</u>

Results

I H<u>AD A HYBRID DREAM...</u>

INTRODUCTION	Detector	Results	SUMMARY
An Au	IGER EVENT		
► 5	SD: large statistics in $24/7$ m	ode, fully efficient at 3 EeV	
▶]	FD: calorimetric particle ID &	calibration, 14% duty cycle	e
► €	energy resolution $\sim 15\%$		
•	ingular resolution 1° – 2° (S	D) and < 1° (hybrid)	
			15

16

ENERGY SPECTRUM

ENERGY SPECTRUM

Inés Valiño, ICRC2015

TAKE HOME MESSAGE I

- ► total systematic uncertainty: 14% (energy scale)
- ► flux uncertainty: 6% (SD)

Inés Valiño, ICRC2015

TAKE HOME MESSAGE II

Partial spectra are grouped according to the mass number: A = 1 (red), $2 \le A \le 4$ (gray), $5 \le A \le 26$ (green), $27 \le A$ (blue), and total (brown).

Armando di Matteo, ICRC2015

RESULTS

PRIMARY COMPOSITION

► Longitudinal profile information from FD

PRIMARY COMPOSITION

Longitudinal profile information from FD

LONGITUDINAL SHOWER DEVELOPMENT

SHOWER MAXIMUM (X_{max}) CORRELATES WITH PRIMARY MASS

standard deviation

Alessio Porcelli, ICRC2015

LONGITUDINAL SHOWER DEVELOPMENT

SHOWER MAXIMUM (X_{max}) CORRELATES WITH PRIMARY MASS

average **Syst.** 🗆 Syst. 850 AUGER, PRELIMINARY 800 (**g/cm**²) (**g**/cm²) 50% p · 50% Fe $\langle \ln A \rangle$ (xem X) 700¹ 650 POS-LHC QGSJetII-04 Sibyll2.1 600 AUGER, PRELIMI 17.5 18.0 18.5 19.5 17.0 20. 17.5 18.0 18.5 19.0 19.5 17.0 20.0 $\log_{10}(\mathbf{E}/\mathbf{eV})$ $\log_{10}(\mathbf{E}/\mathbf{eV})$

interpretation (EPOS-LHC)

Alessio Porcelli, ICRC2015

PROTON-AIR CROSS-SECTION

INELASTIC PROTON-PROTON CROSS-SECTION

STANDARD GLAUBER CONVERSION + PROPAGATION OF MODELING UNC.

 $\sigma_{pp}^{inel} \left(\sqrt{s} = [57 \ \pm 6] \ TeV \right) = \begin{bmatrix} 92 \ \pm 7_{stat} \ (^{+9}_{-11})_{sys} \ \pm 7_{Glauber} \end{bmatrix} \ mb$

INTRODUCTION	Detector	RESULTS	Summary
UHE PHOTON LI Principal component an	MITS alysis		proton Xmax
Monte Carlo Simulations photon 1000 800 3 -2 -1 0	$18 < \log_{10}(E_{1}/eV) < 18.5$ Photon-like proton $1 \qquad 2 \qquad 3 \\ \log_{10}(S_{b})$	MALIO ³ 10 ² 10 ² 10 ² 10 ² 10 ² 10 ² 10 ²	Amax photon photon proton Monte Carlo Simulations Energy = 10 ^{18.5} eV

PHOTON FLUX LIMITS

Carla Bleve, ICRC2015

UHE NEUTRINO SEARCHES

VERY INCLINED SHOWERS

Search for:

- up-going (Earth skimming) showers
- down-going deep showers

DIFFUSE NEUTRINO LIMITS

TAKE HOME MESSAGE III

- new method to extend composition measurement
- mass interpretation is model dependent
- cross section measurement beyond LHC energies

TAKE HOME MESSAGE III

- new method to extend composition measurement
- mass interpretation is model dependent
- ► cross section measurement beyond LHC energies

TAKE HOME MESSAGE IV

- updated limits closing on GZK predictions
- ► competitive limit to UHE neutrino diffuse flux
- sensitivity to point sources

LARGE SCALE ANISOTROPY

DIPOLE SEARCHES

- ► largest departure from isotropy above 8 EeV with a (4±1)% amplitude in the first harmonic in RA
- ▶ phase transition from 270° to 90° at ~1 EeV

E > 8 EeV

Imen Al Samarai, ICRC2015

LARGE SCALE ANISOTROPY

DIPOLE SEARCHES

- ► largest departure from isotropy above 8 EeV with a (4±1)% amplitude in the first harmonic in RA
- ▶ phase transition from 270° to 90° at ~1 EeV

Imen Al Samarai, ICRC2015

SMALL SCALE ANISOTROPY

INTRINSIC SEARCHES

- Search for a localized excess flux
- Autocorrelation of events

Julien Aublin, ICRC2015

SMALL SCALE ANISOTROPY

CROSS-CORRELATIONS WITH ASTROPHYSICAL SOURCES

- Cross-correlation with flux-limited catalogs
- Cross-correlation with bright AGNs
- The Cen A region

Julien Aublin, ICRC2015

INTRODUCTION	DETECTOR	Res	ULTS	Summary
JOINT STUDIES LARGE SCALE ANISOT Combine A Dipole above \$ 0000 \$ 00000 \$ 0000 \$ 0000 \$ 0000 \$ 0000 \$ 0000 \$ 0000 \$ 0000 \$	DETECTOR ROPY Auger and Teleso ove 10 ¹⁹ eV with	cope Array d. amplitude (é	ata 5 ± 2)% — · TA Auger	SUMMARY
4000-				

20

Ó

40

60

80

δ[°] Olivier Deligny, ICRC2015

2000-

0

-80

-60 -40 -20

INTRODUCTION	DETECTOR	RESULTS	Summary
JOINT STUDIES LARGE SCALE ANISOT	Б ^{ROPY} Auger and Telescoj ove 10 ¹⁹ eV with ai	pe Array data nplitude $(6 \pm 2)\%$	
	90		0.385

Olivier Deligny, ICRC2015

MULTI-MESSENGER STUDIES

Cross-correlation between ν 's and UHECRs

- ► First joint IceCube/Auger/Telescope Array analysis.
- Three a posteriori cross-correlation tests.
- ► Potentially interesting result with high-energy cascades.

arXiv:1511.09408, Accepted for publication in JCAP

TAKE HOME MESSAGE V

- percent-level amplitudes in dipole searches
- possible phase transition around the "ankle" energy
 - exploit lower energy data
- hints of small-scale anisotropy only above ~ 50 EeV
- ► joint and multi-messenger analysis

TAKE HOME MESSAGE V

- percent-level amplitudes in dipole searches
- possible phase transition around the "ankle" energy
 - exploit lower energy data
- hints of small-scale anisotropy only above ~ 50 EeV
- joint and multi-messenger analysis

TAKE HOME MESSAGE V

- percent-level amplitudes in dipole searches
- possible phase transition around the "ankle" energy
 - exploit lower energy data
- hints of small-scale anisotropy only above ~ 50 EeV
- joint and multi-messenger analysis

INTRODUCTION	Detector	RESULTS	SUMMARY
Conclusic	INS	π ⁰ π ⁺ Ν	
ENERG	Y SPECTRUM _P	$r / \gamma_i \beta_{ij} \wedge \langle \rangle$	νμ
► im	proved statistics over 3 o	rders of magnitude	
► 900 ► PRIMA ► no ► p- ► ph	bd agreement on spectral RY MASS clear picture above $\uparrow^p 40$ air and $p - p$ cross sectio oton and neutrino limits	features $\downarrow^{e^+}_{e^-} e^+ e^-$ EeV μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^+ μ^- μ^+ μ^- μ^+ μ^-	$p = \frac{n}{p} \frac{p}{n} \frac{p}{n} \frac{p}{p} \frac{p}{p}$
► ARRIVA	AL DIRECTIONS		/ ^µ
 hir no int 	its of small-scale anisotro candidate source identifi eresting modulation in R	py at the highest ener ied A	gies

CONCLUSIONS SUMMARY

THANK YOU VERY MUCH!