Siam Physics Congress 2022 (SPC2022)

Contribution ID: 369 Contribution code: Plenary talk

Type: Plenary Speaker

Advanced Organic Luminescent Materials for Efficient Organic Light-Emitting Diodes

Thursday 23 June 2022 13:00 (1 hour)

In the past decades, organic light-emitting diodes (OLEDs) have been well commercialized due to the maturity of fluorescent (1^{st} generation) and phosphorescent (2^{nd} generation) emissive materials. However, both materials still are not perfect emitters for OLEDs. Recently, the 3^{rd} generation of organic light-emitting materials has been developed by combining the key advantages of the 1st generation materials: simple structure and low cost and the 2nd generation materials: capable of up to 100% intrinsic quantum efficiency (IQE) due to its emission from both singlet and triplet excitons. The 3^{rd} generation emissive materials still retain the basic structure of the 1st generation organic molecule, but they are structurally modified at the molecular level to harvest additional light emissions from triplet excitons, giving rise to high IQE, simple molecular structure, and low-cost emissive material. In this talk, I will focus on our recent developments in 3^{rd} generation of organic luminescent materials capable of producing high IQE via several mechanisms, including thermally activated delayed fluorescence (TADF), hybridized local and charge-transfer excited state (HLCT), triplet-triplet annihilation (TTA), excited-state intramolecular proton transfer (ESIPT) and aggregation-induced emission (AIE) for high-performance organic light-emitting diodes (OLEDs). Our latest achievement in developing and utilizing fluorescence metal-organic framework (MOF) as advanced luminescent materials for OLEDs will be discussed. Finally, the study and development of novel solution-processable luminescent materials in which the essential elemental functions of an OLED, namely an intense solid-state light emission, electron/hole injection and transport capabilities, and solution-processability, would be incorporated by design into a single molecular architecture, will be illustrated. Some examples of solution-processable emissive materials will be discussed in terms of the structure-property relationships, with particular attention to the molecular design that affects the OLED device performance.

Keywords: organic luminescent materials, organic light-emitting diodes (OLED), thermally-activated delayed fluorescence (TADF), hybridized local and charge-transfer excited state (HLCT), triplet-triplet annihilation (TTA), solution-processable luminescent materials, fluorescence metal-organic framework (MOF)

Author: Prof. PROMARAK, Vinich (Vidyasirimedhi Institute of Science and Technology (VISTEC))
Presenter: Prof. PROMARAK, Vinich (Vidyasirimedhi Institute of Science and Technology (VISTEC))
Session Classification: Plenary talk

Track Classification: Condensed Matter Physics