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Introduction

Decoherence

» Decoherence can cause a quantum system to lose its quantum properties, and possibly
turns it to classical counterpart.

» Causes of decoherence: fluctuation, self-interaction, environment interaction, noisy
operations.

» Decoherence plays fundamental roles in quantum dynamics, and its control is essential
in quantum computing, communication and metrology.

» Indicators of decoherene: tunneling, Wigner’s quasi probability, localization of wave
function (our work).

[M. Schlosshauer et al., Rev. Mod. Phys. 76 (2005), arXiv:1404.2635v2 (2019).]
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Wick Rotation

Traditionally, Wick rotation is the transformation ¢ — it, usually applied to improve
convergence in mathematical problems.

When Wick rotation is performed, the free Schrédinger Equation becomes

PR SN LR T i V2w (1)
1h— = — = = —
dt dt 2m ’

yielding a diffusion (heat) equation.

Wick rotation maps wave propagation (unitary) to classical diffusion (non-unitary).

Q: Which classical process behaves like diffusion and has quantum analogue?
A: Random Walk (and possibly more)
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Classical Random Walks

A walker will walk according to random outcome of a classical coin.

If head

Random walker

toss the coin

If tail

Figure: Diagram of 1 step random walk
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Discrete Time Quantum Random Walks
Walker: ¥(¢,x)

[Wo) = [¢hs) @ [9x) = (4] 1) + y [ 1) @ [¢hxc).- (2)

. _ {cosf —sind
Coin Operator: C = (sinﬁ cosf ) .

Walk Operator: S = |1) (1| @ Y7 i + 1) (i| + [4) ({| ® 37 |i — 1) (i| . Time evolution
after N steps

[W(N,z)) = UN W), (3)
UV =(s-(Co1)". (4)

[J. Kempe, Contemp. Phys. 44 (2003); C. M. Chandrashekar et al., Phys. Rev. A 81
(2008); |
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Quantum Random Walks (cont.)

—— Quantum —— Classical Walk
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Figure: The probability distribution of quantum random walk and its classical counter part after
500 steps of walk.
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Problem Statement

» Extend discrete time to continuous time by Poisson process or simply discretization.
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Problem Statement

» Extend discrete time to continuous time by Poisson process or simply discretization.

» Full Wick rotation should yield transition of probability distributions (from QRW to
CRW).

» Do we detect onset of decoherence if Wick rotation is incrementally applied, i.e.
partial Wick rotation?

In this case, instead of t — it, we apply t — zt, z € C with Arg(z) < 7/2.

Why is partial wick rotation interesting?
» Parameter z might indicate or parametrize the degree of decoherence.

» 2z =1 corresponds to pure quantum;
> z =1 to pure classical;
» 2 = a+ bi to something in the middle.
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Proposed Model

U'=(S-(C®I) — U"=(S-(CxI)” (5)
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Proposed Model

U'=(S-(C®I) — U"=(S-(CxI)” (5)

For simplicity, we approximated
> (S-(CRI)™ ~(S*-(C* @)
» S” remains a translation operator; so we keep walk operator as S.

Thus, we propose to investigate a quantum walk under partial Wick rotation via the
complex tossing time.

U* = (S-(C*®I) (6)
W(t,x) = U W) =(S-(C* 1) |¥) (7)

9/17



Complex Tossing Time Coin Operator

By Spectral Theory,
C? = exp(zIn(C)). (8)

Since a coin operator C can be diagonalized (in complex vector space), and using for the
principal branch of logarithm

C* = exp(zLn(C)) = PD*P~! = P <eXp é’w) exp (O—i29)> P! (9)

Complex tossing time coin operator can be treated as a complex angle coin operator.
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Complex Tossing Time Coin Operator

By Spectral Theory,

C? = exp(zIn(C)). (8)
Since a coin operator C can be diagonalized (in complex vector space), and using for the
principal branch of logarithm

C* = exp(zLn(C)) = PD*P~! = P <eXp éize) exp (O—i29)> P! (9)

Complex tossing time coin operator can be treated as a complex angle coin operator.

We can perform simulations with this coin operator.
» As z varies, we probe indicators of interests to capture decoherence or quantum to
classical transition.
> probability density
» Shannon entropy
» Localization (via participation ratio)
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Result: Probability Distribution

— r=a+out

Probability
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Figure: Transition of probability as z varies: (a) z
(b) z=1

> As z varies, we can see a transformation of thee probability distribution from one of

QRW to that of CRW.

» QRW has two components. Under the transformation, one is nonhermitian. This

suppression destroys ability of superposition, leading to decoherence.
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Result: Participation Ratio and Shannon Entropy

Participation Ratio (PR) is defined as

1
bR~ L ¥l (10)

» Maximum PR occurs when all sites have same probability.

% =Y (1/N)? = N/N* = PR=N.

» Minimum PR = 1 is obtained when only one site participates.
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Result: Participation Ratio and Shannon Entropy

Participation Ratio (PR) is defined as

1
bR~ L ¥l (10)

» Maximum PR occurs when all sites have same probability.
1
PR = Z<1/N)2 = N/N?> = PR=N.

» Minimum PR = 1 is obtained when only one site participates.

Shannon entropy is defined as

S = _Zpibgpi- (11)

> We use Shannon entropy to probe loss of information.
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Result: Participation Ratio and Shannon Entropy
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Figure: The participation ratio (left) and entropy (right) after the 500th step for different Im(z).
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Result: Noisy Coin

The coin operator in QRW can have noise, so it is modified

Choisy(0) = C(0 + &)

when &, is random variable with normal distribution with mean zero and variance o

Figure: Probability distribution of QRW with noisy coin operator. Figure credit: P. Pathumsoot

and S. Suwanna.

(12)
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Result: Comparison to Noisy Coin QRW
» Both PR and Shannon entropy exhibit a power law as y = ax® + ¢ a function of
partial Wick rotation (denoted by imginary part of z) and noise strength (denoted by

o). Here z = Im(z), 0.
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Figure: The transition due to noise (red lines) and complex tossing time (black lines) both govern
by power law. The optimized parameters a,b and c are shown in the figures.
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Conclusion

1. Partial Wick rotation ¢ — zt applied to the coin operator, as z gradually changes,
transforms QRW to CRW.

2. The quantum to classical transition is evident from probability distribution,
localization of wave function (participation ratio) and Shannon entropy.

3. The transition is gradual, demonstrated by a power-law decay.

4. Wick rotation applied to the coin operator results in decoherence in the same manner
as the fluctuation in the coin operator.
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Conclusion

1. Partial Wick rotation ¢ — zt applied to the coin operator, as z gradually changes,
transforms QRW to CRW.

2. The quantum to classical transition is evident from probability distribution,
localization of wave function (participation ratio) and Shannon entropy.

3. The transition is gradual, demonstrated by a power-law decay.

4. Wick rotation applied to the coin operator results in decoherence in the same manner
as the fluctuation in the coin operator.

Outlook
1. Complex time walk operator S* ; U* = S* . (C* ®1I)

2. Connection between complex-time quantum random walk and noisy quantum random
walk via Feynman-Kac path integral.
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Probability growth
Scaling matrix is not hermitian thus not preserve the norm.
The norm growth with the factor exp(b8), since

P <exp(0—b9) exptzbe)> p-1p <expg'a9) exp(g me)) p-1

real eigenvalue
The walk is normalized by

(S-(C*0D)¥(t)
1(8- (C* @ D) (1)l

U(t+1) =
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Branching

The range of complex logarithm can be selected to be function by selecting its branch,
denotes by n, given by
In(z) = Ln(z) + iArg(z) + i(2nw), (15)

where Arg(z) = arctan(b/a) for z = a + ib. The previous calculation is done in the
principal branch, n = 1.

Branching only affect scaling matrix.

C: = C*(0 + 2mn) = A(b(6 + 2mn))R(ab) (16)
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Branching (cont.)

For example, 0 = 7, b = d(1 + 8n). That is C; (df)) = C*((1 + 8n)d), which implies that
the shifting from principal branch to n*" branch is the same as changing the argument
from b6 to b(f + 27n).

6.00 — n

Entropy
participation ratio

0.00 0.05 0.10 0.15 0.20 025 0.30 0.00 0.05 0.0 0.15 0.20 025 0.30
3(2) 3(2)

Figure: Participation ratio and entropy at the 500th step of walk with the coin from branch n = 1.
Coin angle is /4.



Time series Noisy Coin
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Composition of the Coin Operator

A complex tossing time coin operator is a composite of a scaling matrix S and a coin

operator.
C: =P (eXp(()iZ‘g) b (0—iz9)> Pliz=a+bi (17)
B exp(—b0) 0 14 [exp(iad) 0 1
=P < 0 exp(b9)> PP < 0 exp(—ia9)> P (18)
= A(b9)C(ab) (19)
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Time series of parameters

I just notice that there are two repeated graphs here.
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Figure: Time series of entropy and participation ratio of the walk with different value of z
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Commutator of walk operator and coin operator

Given the initial state is |¢)g) = (a|1) + S ]4)) @ |0)

S-(C®1)|th) = (wcosh + Bsinb) |1) @ |1) + (wcosf + Bsinb) ||) @ |—1) (20)
(C®1)-S¢o) = ((arcos0) 1) —asinf 1)) @ [1) + ((Bsind) [1) — BeosO|L)) @ [-1) (21)

The commutator [S, (C® 1)] is

s.Canllw) = (T5g) e+ (Z55m0) o -1 (22)
I15.(C & 1)] [ = 2(a? + 52)(sn?6) (23)

IS, (Co1)][bo)|* =1 ;0 =n/4 (24)
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Consistence history

A class operator, C, is alternating product of projector operator P and time evolution
operator exp(iHAt/R).

C = T[] Piexp(iHAt/R) (25)
i
H. F. Dowker and J. J. Halliwell, “Quantum mechanics of history: The
decoherencefunctional in quantum mechanics,”Phys. Rev. D, vol. 46, pp. 1580-1609, Aug
1992.
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