Contribution ID: 694 Type: Poster

Effects of Yttrium Doping on Acetone Sensing Properties of Flame-spray-made SnO₂ Nanoparticles

Tuesday 22 May 2018 15:45 (15 minutes)

Saowalak Homnan 1,a , Anurat Wisitsoraat 2,3,b , Adisorn Tuantranont 2,4,c , Sukon Phanichphant 2,d , Chaikarn Liewhiran 1,2,5*

Abstract. In the present study, gas-sensing properties of flame-spray-made 0-2 wt% Y_2O_3 -doped SnO_2 nanoparticles are systematically and selectively studied for detection of acetone (C_3H_6O) which practically occurred in specific applications. Structural characterizations by electron microscopy, X-ray analysis and nitrogen adsorption further confirmed the formation of loosely agglomerated SnO_2 nanoparticles (5-15 nm) with high specific surface area and highly crystalline tetragonal-cassiterite SnO_2 structure doped with Y^{3+} oxidation states. The gas-sensing properties of undoped SnO_2 and Y_2O_3 -doped SnO_2 sensors were systematically tested towards C_3H_6O under atmospheric conditions at the working temperature ranging from 200-350°C. Tested results indicated that the optimal 0.2 wt% Y_2O_3 -doped SnO_2 exhibited high responses of ~322 to 400 ppm acetone under exposure at working temperature of 350°C in dry air compared with undoped one. Moreover, the optimal Y_2O_3 -doped SnO_2 sensors evidently displayed high selectivity against various gas/vapor categories including flammable gases, toxic gas and VOCs. Therefore, Y_2O_3 -doped SnO_2 sensors are potential for responsive detections of C_3H_6O at ppm-level but with limited selectivity and may be useful for environmental and biomedical applications.

 $\textbf{Keywords}: n\text{-type }Y/SnO_2, Nanoparticles, Acetone, Acetylene, Sensor.$

Author: HOMNAN, Saowalak

Co-author: Dr LIEWHIRAN, Chaikarn

Presenter: HOMNAN, Saowalak

Session Classification: A013: Materials Physics (Poster)

Track Classification: Material Physics and Functional Materials

¹Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

²Center of Advanced Materials for Printed Electronics and Sensors, Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

³Carbon-based Devices and Nanoelectronics Laboratory, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand ⁴Thailand Organic and Printed Electronics Innovation Center, National Electronics and Computer Technology Center, National Science and Technology Development Agency, Klong Luang, Pathumthani 12120, Thailand ⁵Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand

 $[^]a ppsaowalak.h@gmail.com, ^b anuratwisit@hotmail.com, ^c adisorn.tuantranont@gmail.com, ^d sphanichphant@gmail.com * Corresponding author's e-mail address: cliewhiran@gmail.com (C. Liewhiran)$