

Searches for exotic decays of the 125 GeV Higgs boson in the CMS experiment

Pallabi Das on behalf of the CMS Collaboration 20 December 2024

XXVI DAE-BRNS High Energy Physics Symposium BHU, Varanasi, India, 2024

Introduction

12 years since the Higgs boson discovery: has LHC really entered the "precision era"?

- Important characterisation of the Higgs boson still remaining: first-generation Yukawa couplings, selfcoupling, quartic coupling, differential cross-section measurements...
- Limited sensitivity to new physics interactions through SM Higgs coupling measurements
- Improvement of analysis techniques and trigger strategies enabling experiments to probe rare event signatures with available data

Nature 607, 60-68 (2022)

- LHC experiments focus on measuring the Higgs properties, including probes to BSM physics
- Direct search for exotic particles able to probe several TeV energy scales
- This talk: reviewing results from various Higgs boson exotic decay signatures using Run 2 data collected by CMS experiment

Higgs to pseudoscalar decays

- Simplest extension of Higgs sector: two Higgs doublets model (2HDM), however available parameter space of 2HDM at the LHC is already much constrained
- By adding an extra singlet, a wide range of possible exotic Higgs decays are possible: 2HDM+S
- The additional singlet has no direct Yukawa coupling, only couples to the two Higgs fields

Type I

Higgs decays to Axion-Like-Particles

- Axions: pseudoscalar particles, originally proposed to answer strong CP problem in QCD
 - Extension of the SM with an additional, spontaneously broken, global chiral symmetry
- ALPs are gauge singlets under SM, coupling to SM fermions
 - Enhanced coupling to photons can contribute to anomalous muon magnetic moment
 - · Constraints on the ALP mass and coupling to photons derived from various experiments

<u>JHEP 12 (2017) 044</u>

- ► Search channels: $h \rightarrow aa$ and $h \rightarrow Za$
 - Effective couplings: C_{Zh}^{eff}/Λ and $C_{\gamma\gamma}^{eff}/\Lambda$
- ► For strongly boosted ALPs, $a \rightarrow \gamma \gamma$ will appear as a single photon jet and contribute to $h \rightarrow Z \gamma$ measurement

$H \rightarrow aa \rightarrow 4\gamma$ (boosted)

Search for very low mass pseudoscalars (0.1 < m_a < 1.2 GeV) in the diphoton decay mode

Boosted diphoton decay is reconstructed as a single photon-like object "\Gamma" using end-to-end deep learning PRD 108 (2023) 052002

Fit 2D distribution of invariant masses m_{Γ_1} and m_{Γ_2}

- **Signal region:** $110 < m_{\Gamma\Gamma} < 140$ GeV around Higgs resonance
- **Sideband regions:** 100 < $m_{\Gamma\Gamma}$ < 110 GeV and 140 < $m_{\Gamma\Gamma}$ < 180 GeV used to estimate non-resonant background

Search is also sensitive to long-lived decays: For $m_a = 0.1$ (0.4) GeV, upper limits are 1.6 (0.9) times larger for $c\tau = 1$ mm and 30 (3) times larger for $c\tau = 10$ mm

PRL 131 (2023) 101801 public plots

136 fb⁻¹ (13 TeV)

$H \rightarrow aa \rightarrow 4\gamma$ (resolved)

Search for SM-like $H \rightarrow aa \rightarrow 4\gamma$ where the four photons are well isolated:

Probes the mass range 15 < m_a < 62 GeV</p>

JHEP 07 (2023) 148

public plots

Train a event classifier using variables uncorrelated to m_{YYYY} and look for a 125 GeV resonance in the m_{YYYY} spectrum of the signal-like events

Observed upper limits on cross section range between 0.80-0.26 fb, compared to Higgs production cross section of 52 pb

Both $H \rightarrow aa \rightarrow 4\gamma$ analyses are statistically limited and no significant deviation from SM background is observed

EPJC 84 (2024) 493

public plots

Clean signature with a precise mass resolution from $m_{\mu\mu}$ and large BR from bb

- Search for a masses within 15 < m_a < 60 GeV</p>
- Bump hunt analysis using the dimuon invariant mass $m_{\mu\mu}$
- Completely data-driven background estimation

Most stringent observed upper limit till date in this final state, slightly better than ATLAS results

No significant deviations from SM prediction, analysis is limited by statistics

H→aa→2т2b

EPJC 84 (2024) 493

public plots

Relatively larger BR to bb and TT, improved T lepton reconstruction techniques

- Search for a masses within $12 < m_a < 60 \text{ GeV}$
- Three final states explored: $\mu \tau_h$, $e \tau_h$, $e \mu$
- SVfit algorithm to reconstruct m_{ττ} including neutrino energies

Type-independent upper limits on BR(H \rightarrow aa \rightarrow Ilbb) in the context of 2HDM+S are derived combining with 2µ2b as a function of m_a

2µ2b and 2τ2b combination: BR(H→aa) values excluded above 23% (Type II tanβ > 1), 7% (Type III tanβ = 2.0) and 15% (Type IV tanβ = 0.5)

H→aa→4b

public plots

Challenging fully hadronic final state, consider mass range $12 < m_a < 60 \text{ GeV}$

- Feasible reconstruction in VH production mode, events selected using single or double-lepton trigger
- Resolved analysis: at least 3 jets in the selected events, categorised based on number of jets and bjets
 JHEP 06 (2024) 097
- Signal-to-background discrimination using a BDT, score distribution compared to data

Assuming B(H \rightarrow aa \rightarrow 4b) = 100%, m_a values between 21-60 GeV are excluded at 95% CL

public plots

Excellent muon reconstruction, can target very low mass $0.21 < m_a < 60 \text{ GeV}$

- Two dimuon pairs per event are chosen, where Im_{(µµ)1} m_{(µµ)2}I < W[(m_{(µµ)1} + m_{(µµ)2})/2], satisfying stringent reconstruction requirements that eliminate most of the background arxiv:2407.20425
- Displaced signature considered for 2018 data using new displaced muon trigger
- Model independent observed upper limits on cross section range between 0.049-0.247 fb for the entire mass range

Results interpreted in NMSSM, ALP and Vector Portal models, 2018 result used to constrain long-lived signature from dark-SUSY model

DAE HEP, 2024

Analysis targets 4 < m_a < 15 GeV where $a \rightarrow \tau_{\mu} \tau_{1-prong}$, also sensitive to $H \rightarrow aa \rightarrow 2\mu 2\tau$

- Same sign muons with large angular separation are selected
- Muons are non-isolated: accompanied by a charged track
- 2D distribution of the two muon-track system is used to discriminate between signal and background

CMS-PAS-SUS-24-002

Most stringent upper limits to date for Type III 2HDM+S for all mass points for $\tan\beta > 2$

$H \rightarrow Za, a \rightarrow \gamma \gamma$

PLB 852 (2024) 138582

public plots

Consider ALP mass range 1 < m_a < 30 GeV

- Use m_{IIYY} distribution within 95 180 GeV to extract signal
- Completely data-driven background
- A BDT classifier is used to separate signal from background, threshold optimised per mass point

No significant deviation from SM background is observed, analysis limited by statistical uncertainty: $B(H \rightarrow Za)$ below ~10⁻⁴ for 1 < m_a < 30 GeV

Constrain effective coupling between H, Z and a within ~ 0.015 to 0.1 in this mass range, comparable to ATLAS results in the same mass range

Higgs portal to hidden BSM sector being explored by CMS analyses in different final states

- → Many full Run-2 results, some analyses ongoing
- Improved sensitivity compared to previous searches using novel analysis techniques and machine learning
- Model independent searches can be interpreted in various theoretical models, including long-lived signatures
- ► Possibility to add $h \rightarrow Za$ search in $a \rightarrow II/jj$ channels, even $a \rightarrow \tau \tau$
- For H→aa, no significant excess over SM prediction just yet, many other channels remain to be explored
 - Asymmetric pseudoscalar masses
 - Long-lived hadronic signatures
 - Boosted reconstruction for low pseudoscalar mass points

Present results are dominated by statistical uncertainties: looking forward to Run-3!

Thank You