

ᅷ

Imaging Cosmic And

RARE

ICARUS at the Short-Baseline Neutrino program: First Results

Promita Roy

Centre for Neutrino Physics, Virginia Tech

On behalf of the ICARUS collaboration

XXVI DAE-BRNS High Energy Physics Symposium December 19, 2024

Outline

- **D** The Sterile Neutrino Puzzle
- **The SBN Program**
- The ICARUS Detector in a nutshell
- □ ICARUS Physics Program

Promita Roy,

Summary and Future prospect

While the 3v-model aligns well with many experiments, some anomalies have been observed in short-baseline neutrino experiments, hinting at a new sterile neutrino flavor with $\Delta m^2 \approx 1 \text{ eV}^2$.

Accelerator experiments:

• LSND (baseline ~30m) $\overline{v_e}$ appearance in a $\overline{v_{\mu}}$ beam (~3 σ) / observed ~87.9 excess $\overline{v_e}$ events

3

While the 3v-model aligns well with many experiments, some anomalies have been observed in short-baseline neutrino experiments, hinting at a new sterile neutrino flavor with $\Delta m^2 \approx 1 \text{ eV}^2$.

Accelerator experiments:

- LSND (baseline ~30m) $\overline{v_e}$ appearance in a $\overline{v_{\mu}}$ beam (~3 σ) / observed ~87.9 excess $\overline{v_e}$ events
- MiniBoone (baseline ~540m)

Excess in $\overline{v_e}$ mode, consistent with the LSND result, also observed excess in v_e mode

While the 3v-model aligns well with many experiments, some anomalies have been observed in short-baseline neutrino experiments, hinting at a new sterile neutrino flavor with $\Delta m^2 \approx 1 \text{ eV}^2$.

Radiochemical experiments:

• Gallium, SAGE, BEST Observed deficit in the detected v

(suggesting oscillations into sterile neutrinos)

5

While the 3v-SM model aligns well with many experiments, some anomalies have been observed in short-baseline neutrino experiments, hinting at a new sterile neutrino flavor with $\Delta m^2 \approx 1 \text{ eV}^2$.

Radiochemical experiments:

• Gallium, SAGE, BEST Observed deficit in the detected v_e (suggesting oscillations into sterile neutrinos)

Reactor experiment:

• Neutrino-4

Independently observed v oscillations with 2.9σ CL

Later, combined analysis of Neutrino-4 with other experiments results in a best fit of $\Delta m_{14}^2 = 7.3 \ eV^2$ and $\sin^2(2\theta_{14}) = 0.36$ at 5.8 σ

While the 3v-SM model aligns well with many experiments, some anomalies have been observed in short-baseline neutrino experiments, hinting at a new sterile neutrino flavor with $\Delta m^2 \approx 1 \text{ eV}^2$.

Several reactor and accelerator experiments, including the recent MicroBooNE, have explored these 'neutrino anomalies.' However, a noticeable tension remains between appearance and disappearance experiments due to differences in the neutrino energy ranges they probe and the detection methods they utilize.

Here comes the SBN program !!

8

Main objectives:

- Definitive search for eV-scale sterile neutrinos by looking for muon neutrinos disappearance and electron neutrinos appearance oscillations.
- Perform detailed study of neutrino-Argon interactions at the GeV energy scale.
- Pursuit advancement of the liquid argon detector technology in view of upcoming multi-kiloTon long baseline DUNE experiment.
- Search for new/rare physics processes in the neutrino sector and beyond.

ICARUS (SBN-FD) and SBND have same technology to minimize beam(BNB), background & detector systematics.

The ICARUS experiment in a Nutshell

Liquid Argon Time Projection Chambers (LArTPCs) first introduced by C.Rubbia in 1977

ICARUS T600 is the first large scale (760 Tonnes) LAr-TPC:

- 2 identical cryostats (3.6 x 3.9 x 19.6 m³)

Each of them have 2 TPCs with common cathode

- Active mass: 470 tons

Timeline

2013: concluded 3 year physics run at LNGS
2015-17: overhaul at CERN
2018: transportation to Fermilab and start of installation
2020: filling with LAr and start of commissioning
2022: start of physics data taking

arXiv:2301.08634v1

The ICARUS experiment in a Nutshell

Liquid Argon Time Projection Chambers (LArTPCs) first introduced by C.Rubbia in 1977

ICARUS T600 is the first large scale (760 Tonnes) LAr-TPC:

- 2 identical cryostats (3.6 x 3.9 x 19.6 m³)

Each of them have 2 TPCs with common cathode

- Active mass: 470 tons

Time Projection Chambers:

- - 3 wire planes per anode (0°,±60° w.r.t horizontal)
- - 500 V/cm E field (1.5 m drift)

Photon Detection System:

 - 360 PMTs coated with TPB behind anode wire planes (90 per anode) for event triggering/timing with light

Cosmic Ray Tagger :

• Top, side and bottom cosmic ray tagger panels (scintillator + SiPM readout)

Wire planes

Detector operations and data acquisition

Data taking started in June 2022, 3 physics run since then: run 3 (both beams) 15 March - 12 July 2024

The cryogenic and purification systems performed smoothly, *maintaining a stable free electron lifetime of ~7-8 ms*, enabling nearly full track detection efficiency over the 1.5 m drift distance (~1 ms).

Detector operations and data acquisition

Promita

Data taking started in June 2022, 3 physics run since then: run 3 (both beams) 15 March - 12 July 2024

The cryogenic and purification systems performed smoothly, *maintaining a stable free electron lifetime of ~7-8 ms*, enabling nearly full track detection efficiency over the 1.5 m drift distance (~1 ms).

Collected Protons on target (PoT)		BNB (FHC) positive focusing	NuMI (FHC) positive focusing	NuMI (RHC) negative focusing
RUN-1	(Jun-Jul 22)	0.41 10 ²⁰	0.68 1020	-
RUN-2	(Dec 22-Jul 23)	2.05 10 ²⁰	2.74 10 ²⁰	-
RUN-3	(Mar-Jul 24)	1.36 10 ²⁰	-	2.82 10 ²⁰
TOTAL	(PoT)	3,82 10 ²⁰	3.42 10 ²⁰	2.82 10 ²⁰

14

19, 2024

Detector performance and calibration

All subsystems are fully operational since the start of physics data taking

- CRTs tag incoming cosmics with 95% efficiency
- CRT & PMT timing information is used to reject cosmic background

Detector performance and calibration

• TPC wire signals are accurately characterized and modeled in Monte Carlo simulation

• Detector response is calibrated using cosmic muons and protons from v interactions, with a new angular-dependent ellipsoidal model (EMB).

2407.12969

- Energy loss per unit length vs residual range for muons and protons PID
- Deposited energy is used to validate calibration and improve calorimetric reconstruction

Promita Roy,

Before the joint-analysis with SBND, ICARUS focuses on a standalone physics program:

- Analysis of the v_{μ} disappearance channel with **BNB** the goal is to confirm/refute the claim by Neutrino-4 experiment
- Study of interactions from *NuMI* to measure *v*-Ar cross sections and optimize reconstruction in the energy range that *DUNE* will explore

• Search for sub-GeV BSM signals using *NuMI*

Event reconstruction criteria:

Two LArTPC event reconstruction frameworks:

- Pandora: pattern recognition software widely used in LArTPCs
- SPINE: entirely based on Machine Learning techniques (arxiv)

Event selection criteria:

- **TPC PMT matched tracks** and no corresponding CRT signal within beam spill window.
- Muon track with length L₁>50 cm.
- At least 1 proton with $L_p > 2.3$ cm (corresponding to $E_k > 50$ MeV). •
- Particles correctly identified by PID tool (based on $d\hat{E}/dx$).
- Fully contained tracks

Promita Roy,

v_u disappearance analysis: Preliminary results

Neutrino-Ar interaction with NuMI

• ICARUS has a large NuMI dataset for v-Ar cross-section measurements:

332k $v_{\mu}CC$ and 17k v_eCC interactions with 6×10²⁰ POT.

• Currently *available data:* ~3.42×10²⁰ POT.

Larger	sta	tisti	cs of	v _e	
interac	tion	s y	with	Ar	
compar	ed	to	prev	vious	
experiments.					

Promita Roy,

Neutrino-Ar interaction with NuMI

• **NuMI's neutrino energy** spectrum ranges from a few hundred MeV to a few GeV, covering the energy range relevant for the **DUNE** experiment.

Promita Roy,

NuMI 1µNp0π Analysis: First cross-section analysis with ICARUS

NuMI 1µNp0 π Analysis: First cross-section analysis with ICARUS

Promita Roy,

BSM physics program with NuMI

- Rich BSM search program based on the *off-axis NuMI* beam.
- Models explored so far:

Higgs Portal Scalar (scalar dark particles, interacting with SM particles with Higgs boson mixing),

Heavy QCD axion (pseudo-scalar particles, interacting with SM ones via pseudo-scalar mesons)

Typical signal candidate

Di-lepton analysis

Event selection:

- **2 stopping µ-like particles** (fully contained) with resolvable mass peak, proxy of the scalar particle mass
- Signal peak is looked at small angles wrt beam (**heta_{NuMI} < 5 degrees**)

Promita Roy,

BSM physics program with NuMI

Di-lepton analysis

A bump hunt search in the data against the scaled background prediction obtains an insignificant excess with **a global significance of 0.19** σ , in the range 0.24 < M_{µµ} < 0.31 GeV.

<u>arXiv:2411.02727</u>

Summary and next steps towards the goal

- ICARUS is running stably and has completed 3 physics run (Run1-Run3) since summer 2022, while being exposed to both on-axis BNB and off-axis NuMI neutrino beams.
- Very recently ICARUS has started taking Run4 data with BNB.
- Accurate detector calibration and response modelling is done using cosmic muons and protons from interactions and now they are fully embedded in our simulations.
- In the view of the upcoming joint-SBN analyses, several single detector studies are progressing and are quite advanced:

• v_{μ} - disappearance channel with BNB: control sample will be enlarged to complete validation, full dataset will be unblinded and oscillation fit will be performed

- **v**-Ar cross section measurements with NuMI: ready to study the sidebands with the full statistics
- Search for μ^+/μ^- final state topology: first results available, analysis completed.
- Several other analyses with ICARUS BNB, NuMI data are going on, so stay tuned! :)

Thank you !!

Promita Roy,

Back up

- ICARUS (SBN-FD) and SBND have same technology to minimize beam(BNB), background & detector systematics.
- BNB operates at 0.8 GeV, while ICARUS also receives neutrino beam from the Main Injector (NuMI).
- Capable of sensitive search in the $(v_{\mu})v_{e}$ (dis)appearance channels to confirm/refute past anomalies in data

v_u disappearance analysis: Preliminary results

31

Event reconstruction criteria:

Two LArTPC event reconstruction frameworks:

- Pandora: pattern recognition software widely used in LArTPCs
- **SPINE**: entirely based on Machine Learning techniques (arxiv)

Systematics:

- Flux (~10%), cross-section (~15%) and detector systematics(~15%) included
- A reduction in the impact of detector systematics is expected from improved MC, while flux and cross-section systematics values should cancel with joint-SBN analysis

BSM physics program with NuMI

Models explored so far feature dark particles coupling to SM particles via Scalar Portal Interactions:

Higgs Portal Scalar (scalar dark particles, interacting with SM particles with Higgs boson mixing),

Heavy QCD axion (pseudo-scalar particles, interacting with SM ones via pseudo-scalar mesons)

<u>Di-lepton analysis</u>

Limits on the Higgs Portal scalar and heavy axion models. Exclusions are computed with the CLs method at the 90% CL.

arXiv:2411.02727

M_{µµ}: 311 MeV

- ICARUS (SBN-FD) and SBND have same technology to minimize beam(BNB), background & detector systematics.
- BNB operates at 0.8 GeV, while ICARUS also receives neutrino beam from the Main Injector (NuMI).
- Capable of sensitive search in the $(v_{\mu})v_{e}$ (dis)appearance channels to confirm/refute past anomalies in data.

Main objectives:

- Search for eV-scale sterile neutrinos by looking for muon neutrinos disappearance and electron neutrinos appearance oscillations.
- Perform detailed study of neutrino-Argon interactions at the GeV energy scale.
- Pursuit advancement of the liquid argon detector technology in view of upcoming multi-kiloTon long baseline DUNE experiment.
- Search for new/rare physics processes in the neutrino sector and beyond.

Detector operations and data acquisition

Data taking started in June 2022, 3 physics run since then: run 3 (both beams) 15 March - 12 July 2024

Collected Protons on target (PoT)		BNB (FHC) positive focusing	NuMI (FHC) positive focusing	NuMI (RHC) negative focusing
RUN-1	(Jun-Jul 22)	0.41 1020	0.68 1020	-
RUN-2	(Dec 22-Jul 23)	2.05 10 ²⁰	2.74 10 ²⁰	-
RUN-3	(Mar-Jul 24)	1.36 10 ²⁰	-	2.82 10 ²⁰
TOTAL	(PoT)	3,82 10 ²⁰	3.42 10 ²⁰	2.82 10 ²⁰

Transverse kinematics variables

These detectors *are high-granularity, uniform, and self-triggering, with 3D imaging and calorimetric* capabilities, making them ideal for neutrino physics.

- The *n*-Ar interactions produce tracks, with ions and photons along those.
- *Photons propagate inside the detector* [the scintillation light is collected by the photomultiplier tubes (PMTs) for precise event timing and event calorimetry].
- *The ionized electrons will slowly drift towards the anode* by an applied electric field.
- *The ionized electrons produce induction signals* as they pass the first two wire planes and are collected on the last wire plane.